Risk Assessment

Cornerstone of Aquatic Invasive Species Programs

Becky Cudmore

Fisheries and Oceans Canada and

Nicholas E. Mandrak

Department of Biological Sciences University of Toronto Scarborough

Outline

- Risk Assessment very brief 101
- Risk Assessment Steps (arrival-survivalestablishment-spread-impact):
 - Examples of information gathered
 - How risk assessments inform an AIS Program?
- Conclusions

Outline

- Risk Assessment very brief 101
- Risk Assessment Steps (arrival-survivalestablishment-spread-impact):
 - Examples of information gathered
 - How risk assessments inform an AIS Program?
- Conclusions

What is Risk Assessment?

A procedure to identify likelihood of threats & vulnerabilities, and analyze them to ascertain the magnitude of exposures.

Risk Assessment in an AIS Program

- Goal of an aquatic invasive species (AIS) program should be prevention, but other actions may be required = well-rounded AIS Management Program
- Risk assessment NOT JUST RISK!
- Scientifically defensible information for decision-makers within all levels of an AIS Management Program cycle.

AIS Management Program Cycle

Risk Assessment Process

Risk Assessment Process

Outline

- Risk Assessment very brief 101
- Risk Assessment Steps (arrival-survivalestablishment-spread-impact):
 - Examples of information gathered
 - How Risk Assessments inform an AIS Program?
- Conclusions

Data:

- Presence in pathway
- Volume of individuals (propagule pressure)
- Distribution
- Physical connections
- Human-mediated releases

Chan et. al.

Informs:

- Alignment of resources for early detection in:
 - Geographic areas of highest risk
 - Pathways of highest risk
- Implementation of management actions (e.g. regulations)

Data:

- Environmental suitability of potential range including environmental tolerances (e.g. salinity, temperature, calcium)
- Habitat and food availability (all life stages, especially vulnerable life stages)
- Predation and disease

CEC 2009

Informs:

- Response actions
- Control mechanisms
 - "Achilles heel" that can be exploited for eradication or population level control (impact mitigation)

Data:

- Environmental suitability of potential range
- Environmental tolerances of the species
- Number of individuals
- Survival of early life stages

Informs:

- Where to conduct early detection surveillance
- When to conduct ED
- Most effective gears

Data:

- Environmental suitability and tolerances
- Natural dispersal ability, patterns and speed
- Other movement mechanisms – humanmediated

Cudmore et al. 2017

Informs:

 Temporal risk over time for managers in larger geographic areas

Mitigation of movement in secondary pathways

TIME

Data:

- Magnitude of impact on ecological endpoints (e.g. biodiversity, habitat, water quality)
- Disease and hybridization
- Ranges from expert opinion to predicted modelling to published research

Informs:

- Critical points for risk control
- Most effective groups for stakeholder/public education and management
- Best geographic locations for signage (most vulnerable areas)
- Prioritization

Arrival-Survival-Establishment-Spread-Impact Broader Aspects

- Required uncertainty elements in a risk assessment can provide direction for further scientific research needs
- Prioritization for program focus
- Support tool for screening large # species and for listing decisions
- Risk mitigation and analysis
- Reporting back on the program

Outline

- Risk Assessment very brief 101
- Risk Assessment Steps (arrival-survivalestablishment-spread-impact):
 - Examples of information gathered
 - How risk assessments inform an AIS Program?
- Conclusions

Conclusions

Research Priorities

Outreach/Education

Early Detection

Program Reporting

Regulations/Policies

Threat Mitigation

Response

Population Control

Prioritization

Conclusions

- ✓ Risk assessment plays a key role in an AIS Management Program
- ✓ Information and results from each element in the RA process provides scientifically defensible advice for management decisions and actions
- ✓ Requires ongoing interaction between science and management

Becky.Cudmore@dfo-mpo.gc.ca Nicholas.Mandrak@utoronto.ca

