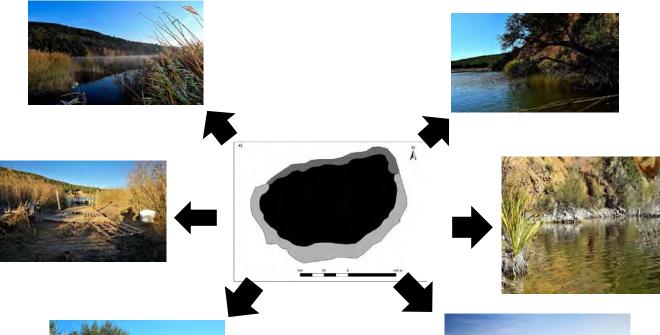
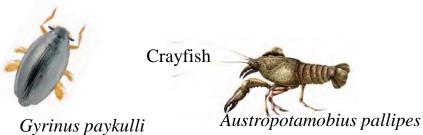
SENCKENBERG world of biodiversity



Predicting the effects of reintroducing a native predator (European eel, *Anguilla anguilla*) into a freshwater community dominated by alien species

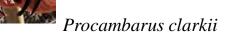
Phillip J. Haubrock, Paride Balzani, Alberto Criado, Agustín P. Monteoliva & Elena Tricarico

Lake Arreo


Protected habitat

~ 136 ha

Max. depth: 24 m


Native species Coleoptera

Non-native species

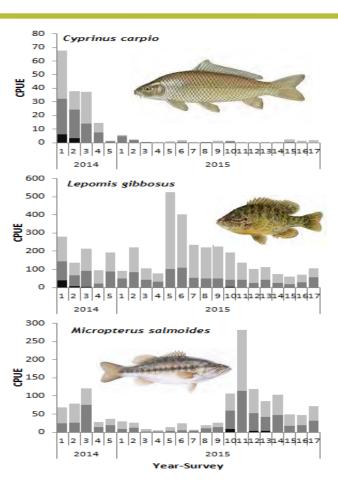
Crayfish

Fish

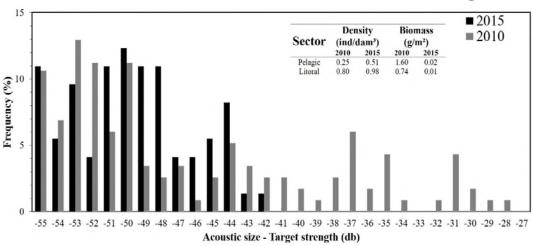
Gyrinus раукині

Fish

Tinca tinca


Anguilla anguilla

Micropterus salmoides Lepomis gibbosus Cyprinus carpio

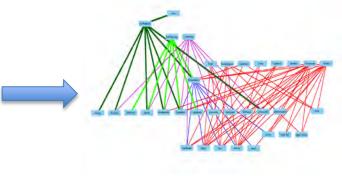

Vegetation

Phragmites australis

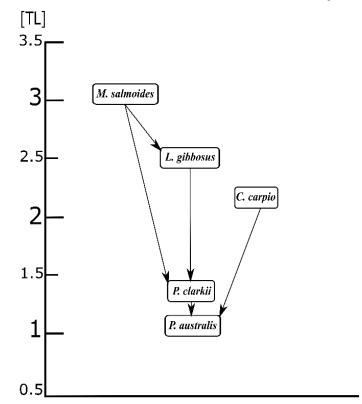
Management

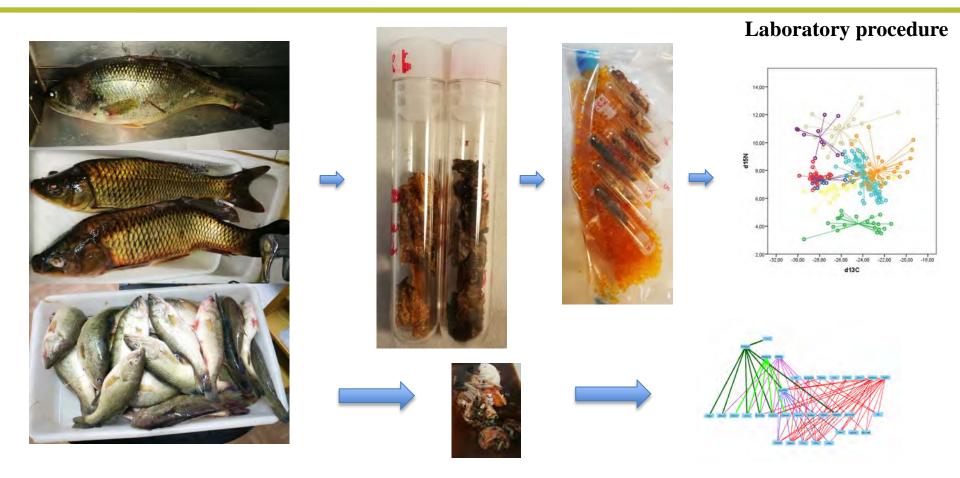
Sampling 2018

Species	Isotope Sample Size	Stomach Sample Size			
Micropterus salmoides	15	50			
Lepomis gibbosus*	15	50			
Cyprinus carpio	11	11			
Procambarus clarkia	15	50			
Phragmites australus	5				

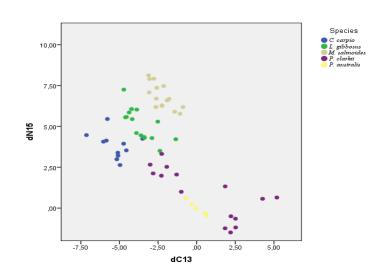


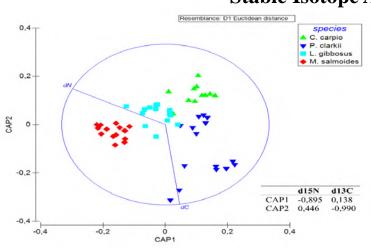
Laboratory procedure

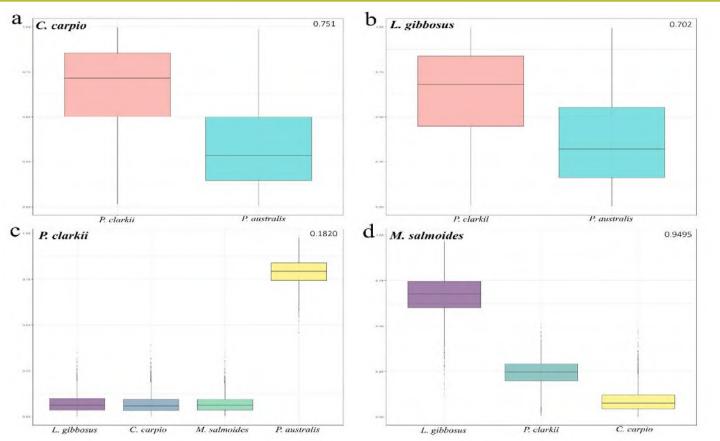




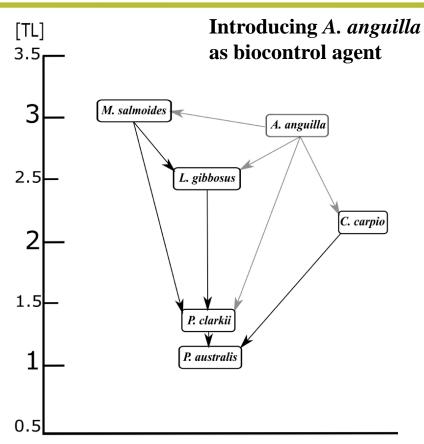
Diet analysis


Prey	L. gibbosus	M. salmoides	C. carpio		
P. clarkii	5.2	78.7	0.0		
L. gibbosus	0.0	5.6	0.0		
Odonata	0.0	4.0	0.0		
Mollusks	1.5	0.0	0.0		
Hymenoptera	10.3	0.5	0.0		
Heteroptera	4.5	0.0	0.0		
Snails	0.0	0.0	0.0		
Araneae	0.5	9.7	0.0		
Diptera	1.3	0.0	0.0		
Odonata	2.1	0.0	0.0		
Orthoptera	5.2	0.0	0.0		
Coleoptera	49.7	0.0	0.0		
Formicidae	0.5	0.0	0.0		
unid. Insects	44.1	0.0	0.0		
detritus	32.6	0.5	45.5		
fisheggs	3.7	0.0	0.0		
plant material	1.6	0.0	0.0		





Stable Isotope Analysis


Group –	Layman metrics and Stable Isotope Analysis results								
	Mean δ^{15} N	Mean δ^{13} C	NR	CR	TA	CD	MNND	SDNND	SEAc
Cyprinus carpio	12.2	-33.9	2.8	3.8	5.4	1.0	0.6	0.5	2.5
Lepomis gibbosus	13.5	-32.2	3.8	3.4	4.9	1.2	0.5	0.4	2.2
Micropterus salmoides	15.2	-30.8	2.2	2.3	2.6	0.9	0.3	0.2	2.3
Procambarus clarkii	9.4	-28.2	4.8	9.6	16.3	3.2	0.8	0.7	10.2
Phragmites australis	8.4	-28.6	1.0	1.4	0.1	0.6	0.3	0.2	0.1
Community	na	na	8.6	12.3	53.4	3.0	0.4	0.4	17.1

Stable Isotope Analysis Mixing Models

Idea: introduce 1.000 – 2.000 grown individuals

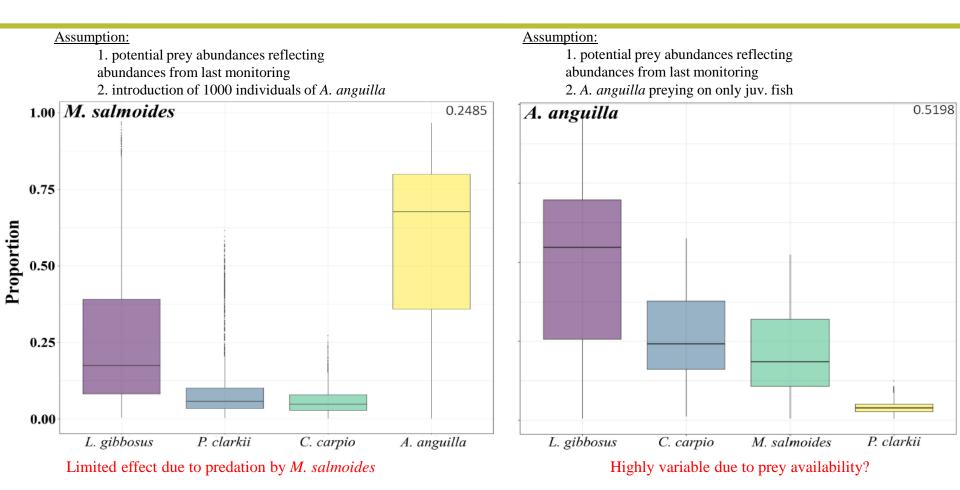
Based on literature and diet analyses

1. Identifying suitable isotope data

Limited availability of data

Dörner et al., (2009) Journal of Fish Biology 74

Introducing A. anguilla as biocontrol agent


Similar community:

- Perca fluviatilus
- Rutilus rutilus
- Tinca tinca
- Orconectes limosus
- Phragmites australis

2. Extract species of interest and potential baseline organism

Anguilla anguilla & Phragmites australis

3. Standardize species of interest and community by the common baseline organism

- Stable Isotope analysis (and associated models) are a powerful tool.
- Multiple invaded ecosystems form unique communities.

- Mixing models can applied based on specific assumptions (e.g. gape size limitations, habitat use, etc.).
- indicate a high probability of predation by M. salmoides
- Introductions of A. anguilla, will likely affect invasive species.

www.aquainvad-ed.com

Thank you for your Attention

This project has received funding from European Union's Horizon 2020 under Marie Sklodowska-Curie Grant Agreement no 642197

