Temperature Effects on Exploratory Behaviour and Learning Ability of Invasive Mosquitofish

Kit Magellan

School of Biological Sciences University of Hong Kong

- Enhances invasion success
 - Exploit novel resources
- Ideal first response to change
 - Rapid adjustment

- Enhances invasion success
 - Exploit novel resources
- Ideal first response to change
 - Rapid adjustment
- Many behaviours
 - e.g. aggression, competition, foraging, reproductive, parental care

- Learning
 - Fine tune existing behaviours
 - New behaviours Innovation

- Learning
 - Fine tune existing behaviours
 - New behaviours Innovation

Corvus frugilegus

100 worst invasive species

Tolerant and generalist

100 worst invasive species

Tolerant and generalist

Internal fertilization, live birth, sperm storage

Outside pond at University of Hong Kong

Acclimated fish to:
lab conditions – 6 weeks
temperature – 6 weeks

Three temperatures: Warm - 31°C

Medium - 27°C

Cool - 23°C

Add fish the evening before

Phase 1: Add novel object (feeding tube) 5 mins observation

Phase 2: Add food (defrosted bloodworms)
5 mins observation

Leave for 30 minutes

Three consecutive days

Measured total length

Variables:

Phase 1: Time to 1st approach

Phase 2: Time to 1st approach and time to 1st entry

Fish sex and size

Analyses: Generalized Linear Models
Generalized Estimating Equations

General Results

General Results

Phase 1 – Novel Approached: 64%

Day 1: 34%

Day 2: 72%

Day 3: 86%

Warm: 57%

Medium: 71%

Cool: 63%

Phase 2 - Food

App & Entered: 37%

Day 1: 25%

Day 2: 39%

Day 3: 48%

Warm: 39%

Medium: 38%

Cool: 35%

Prediction 1

Warm-acclimated mosquitofish

- Approach a novel object faster
- Adjust to a novel object faster
 - learning

Phase 1 data

Effect	Wald χ ²	df	0.446 <0.001	
Temp	1.616	2		
Day	65.688	2		
Sex	17.540	1	<0.001	
Temp × Day	2.577	4	0.631	
Temp × Sex	1.008	2	0.604	
Day × Sex	9.497	2	0.009	
Temp × Day × Sex	2.354	4	0.671	

- Females
 - Approach faster over time
 - No difference with temperature

- Males
 - Warm-acclimated
 - approach faster over time
 - Medium & cool acclimated
 - approach slower over time

	df	Sex			
		Females		Males	
		Wald χ^2	p	Wald χ²	p
Temp	2	16.309	<0.001	7.181	0.028
Day	2	6.098	0.047	2.928	0.231
Size	1	29.986	<0.001	0.030	0.862
Temp × Day	4	12.213	0.016	11.555	0.021
Temp × Size	2	16.261	<0.001	5.798	0.055
Day × Size	2	4.736	0.094	2.480	0.289
Temp × Day × Size	4	11.094	0.026	11.619	0.020

- Females
 - Generally approach faster over time
 - Medium & cool acclimated
 - approach faster with increasing size
 - Warm acclimated
 - no effect of size
- Males
 - Generally approach faster over time
 - Warm-acclimated
 - approach faster with increasing size
 - Medium & cool acclimated
 - No effect or approach slower over time

Prediction 2

Warm-acclimated mosquitofish

Learn to find food faster

Phase 2 data

Variable = (Enter – Approach)

Effect	df	Wald χ²	р
Temp	2	2.193	0.334
Day	2	3.122	0.210
Sex	1	1.585	0.208
Temp × Day	4	0.321	0.988
Temp × Sex	2	10.755	0.005
Day × Sex	2	3.936	0.140
Temp × Day × Sex	4	2.446	0.654

- Overall decrease over time
 - More apparent for males than females
 - Females
 - Cool acclimated showed greatest response
 - Males
 - Warm acclimated found food faster
 - Not much improvement over time

Effect	df	Females		Males	Males	
		Wald χ²	р	Wald χ²	р	
Temp	2	11.478	0.003	11.974	0.003	
Size	1	15.323	<0.001	6.737	0.009	
Temp × Size	2	12.275	0.002	11.819	0.003	

- Females
 - Larger females took longer to find food
 - Especially at warmer temps
- Males
 - Larger males faster in cool & medium temps
 - Smaller males faster in warm temps

Conclusions

Overall warm acclimated fish performed better

But patterns influenced by sex and size

Remarkably rapid learning

Aquatic Invasions (2019) Volume 14, Issue 3: 502–517

Special Issue: Behaviour in Aquatic Invasions Guest editors: Kit Magellan, Amy Deacon, Marian Wong and Mhairi Alexander

Research Article

Temperature effects on exploratory behaviour and learning ability of invasive mosquitofish

Kit Magellan^{1,2,*}, Timothy C. Bonebrake¹ and David Dudgeon¹

¹School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong SAR, Hong Kong

²Current address: University of Battambang, Battambang, Cambodia

Author e-mails: kitmagellan@gmail.com (KM), tbone@hku.hk (TCB), ddudgeon@hku.hk (DD)

*Corresponding author

https://www.reabic.net/aquaticinvasions/2019/AI_2019_Magellan_etal.pdf

Questions Behaviour Reproduction Metabolism Morphology **Temperature** Population demography Distribution

Questions

Questions

Levels of Effect

- Plasticity
- Developmental
- Evolutionary

Questions Developmental

