Lygodium microphyllum sporophyte development from soil samples collected in hydric habitats

Jeffrey T. Hutchinson
University of Texas San Antonio
Department of Environmental Science and Ecology

Introduction (Lygodium microphyllum)

- Common name: Old World climbing fern
- First recorded in 1958 two sites in southern Florida
- Covered > 48,000 ha within 50 years
- Expanded range into northern Florida 2010
- Spreads by wind blown spores (60 μm)
- Indeterminate growth (horizontally and vertically)
- Out-competes and smoothers native vegetation
- Highly pyrogenic, altering fire regimes in wetland habitat
- Priority invasive species in Florida

Lygodium microphyllum range

Includes temperate regions of Northern India, China, and Australia

(Pemberton, 1998)

Two management plans written in 5 Years

OLD WORLD CLIMBING FERN
(Lygodium microphyllum) MANAGEMENT PLAN
FOR FLORIDA

Florida Exotic Pest Plant Council Lygodium Task Force

> 2006 Second Edition

Cursory information existed on spore viability and sporophyte development from soil samples

Objectives

• Evaluate *Lygodium microphyllum* sporophyte development from soil samples collected in untreated sites at 0, 6, and 12 months

- Estimate sporophyte development of Lygodium microphyllum from soil samples collected in treated and untreated sites (range - 0 to 24 months)
 - Herbicide treatment and prescribed fire

Methods

- Soil samples were collected from 10 sites in Central and Southern Florida:
 - 1) Untreated sites (n = 72 at 0, 6, and 12 months)
 - 2) Ground foliar herbicide treated and untreated sites (n = 42 at 0, 6, 12, 18, and 24 months post-trt)
 - 3) Aerial herbicide + burn and untreated sites (n = 51 at 12 months post-trt)
 - 4) Cut and spray, band spray, and untreated sites (n = 25 at 12 months post-trt)

Untreated Site

Aerial Herbicide
Treated Site

Ground Foliar Herbicide Treatment

Untreated site > 50 m away from L. microphyllum

Northern Everglades Tree Islands

Aerial Herbicide + Prescribed Burn

Untreated

Cut and Spray

Band Spray

Soil Samples

Methods (cont.)

- Soil samples maintained in greenhouse under natural photoperiod (10-14 hr sunlight) and 50% shade
 - Watered to field capacity daily
 - Temperature range of 21-37 °C
- Sporophyte development counted weekly for 6 months following potting
- Data analyzed with t-test, ANOVA, or Friedman's test at P
 < 0.05

Results

Sporophyte development from soils in untreated sites

67% loss of viability from 0 to 12 months

Sporophyte development from foliar herbicide treated and untreated sites

Sporophyte development from herbicide + burn and untreated sites at 12 months post treatment

Sporophyte development from cut and spray, band spray, and untreated sites at 12 months post treatment

Conclusions

 Lygodium microphyllum sporophyte development decreased by 67% from 0 to 12 months in soil samples.

- Sporophytes were found at higher densities (1400-3000 m²) in treated sites compared to untreated sites (250-700 m²) from 0 to 24 months post treatment.
- These results indicate that disturbance from treatments open up habitat for wind-blown *Lygodium microphyllum* spores to invade.

Conclusions (cont.)

 A systematic landscape treatment approach will be needed to reduced the numerous spores produced by Lygodium

microphyllum.

 Selective herbicide treatment combined with biocontrols represents the best option for long-term control.

Acknowledgments

- University of Texas at San Antonio Department of Environmental Science and Ecology
- University of Florida Center for Aquatic and Invasive Plants
 - Dr. Kenneth Langeland
- Florida Game and Freshwater Fish Commission

Questions

jeffrey.hutchinson@utsa.edu

SEE EXCEL FILE:

ALL DATA SUMMARIZED up to 24 months