Structured Decision Making and Adaptive Management for AIS Responses: **An Application to Grass Carp in Lake Erie**

Lucas Nathan¹, Kelly Robinson², Mark DuFour³, Seth Herbst¹, Mike Jones², and Tammy Newcomb¹ **ICAIS**

October 29, 2019

Quantitative Fisheries Center MICHIGAN STATE UNIVERSITY

Decision making can be difficult

- System dynamics not well understood (uncertainty)
- Objectives can be complex
 - Different perspectives
 - Trade-offs are difficult
- Don't know all the possible alternatives or their consequences

..especially for invasive species

- Little information about species in new ecosystem or region
- Effects on socio-ecological system can be diverse and complex
- Further complicated when multiple jurisdictions are involved

History of Grass Carp in Lake Erie

- 1963: Introduced into U.S.
- 1980's: USFWS triploid certification program to reduce risk
- Mid-1980's: Found in Lake Erie, presumed triploids
- Early 2010's: Captures of diploids by commercial fishers
- Mid 2010's: Evidence of spawning increased concerns

2014 Response

- Incentive program for commercial fishers
- Michigan and Ohio DNRs multi-agency response in Michigan waters of Lake Erie
- Great Lakes and St. Lawrence Governors and Premiers Mutual Aid Agreement
- Large amount of effort (>100 hours) and \$\$\$ (>\$100k)
- Resulted in two fish captured

2014 Response

Need a more effective strategy and more coordinated decision-making process

nesulted in two iish captured

Structured Decision Making (SDM)

- Used to help navigate complex decisions
- Incorporates available information and stakeholder values
- Formal structure for transparent and collaborative process

Adaptive Management

 Iterative strategy of implementing management with the goal of reducing uncertainty

Explicitly incorporate learning into conservation actions

2016: Begin Grass Carp SDM Process

- Led by Michigan State University
- 3 workshops
- 13 organizations

SDM Process

- Identified problem, objectives, and uncertainties
- Evaluated alternatives using population projection model
 - 1. No management action
 - 2. General removal action
 - 3. Concentrated removal action
 - 4. Concentrated removal action + barrier

Outcomes of SDM Process

- Key uncertainties
 - Seasonal movement patterns
 - Gear efficiency
 - Abundance
 - Feasibility of seasonal barrier
- Begin adaptive management
 - 5-year plan
 - Goals:
 - Remove 390 Grass Carp/year
 - Address uncertainties

Addressing the Knowledge Gaps for Control

Completed or on-going work:

- Gear efficiency/catchability
- Seasonal movements and tributary use via telemetry
- Judas fish response
- Ploidy analysis (i.e., fertile vs. sterile)
- Otolith microchemistry to determine natal origin
- Early life history sampling in tributaries
- Refine likely spawning and hatching locations in OH tributaries
- Population genomics
- Aquatic vegetation mapping

Fisheries and Oceans Canada

2018 Response – Ohio Waters

- Similar amount of effort as 2014
 - > 100 hours of E-fishing and netting effort
 - 14 organizations
- Telemetry, egg captures, FluEgg modeling used to identify spawning locations

2018 Response – Ohio Waters

- 31 fish captured in one week
 - One of the largest single removal events of Grass Carp from Lake Erie

2019 Response Actions

Continue to focus removal efforts during spawning periods in OH tributaries

Increased capacity from GLRI funding

• Total of 159 fish removed in 2019 to date

Benefits of SDM and AM

- Provides transparency in decisionmaking process
- Promotes researcher-manager collaborations
- Explicit objectives used to guide collaborative efforts
- Effectiveness of removal efforts improved over time as uncertainties are addressed

Lessons Learned

- Funding is critical
 - GLRI funding for Lake Erie Grass Carp efforts via the Asian Carp Regional Coordinating Committee (ACRCC)
- Identifying partners early key to success
 - GLFC Joint Strategic Plan provided framework for collaboration
- Important to maintain inter-agency communication about ongoing work
- Inter-agency data and information sharing can be challenging

Thank you

nathanl@michigan.gov

