Climate Match Fails to Explain Variation in Establishment Success of Non-native Freshwater Fishes in a Warm Climate Region

Jeffrey E. Hill, Quenton M. Tuckett, and Katelyn M. Lawson

20th International Conference on Aquatic Invasive Species
October 23-26, 2017
Ft. Lauderdale, Florida

Invasion Ecology

- Predicting successful invaders a central question
- Consistent predictors?
 (Hayes and Barry 2008)
 - Climate match
 - Prior invasion success
 - Propagule pressure

Climate Match

- Strong filter on invasion (Chapman et al. 2014)
- Fundamental
 mismatch can
 prevent
 establishment and
 spread

CLIMATCH

Simple, free

Similarity algorithm

- 16 variables
 - Temperature
 - Precipitation
- Compares weather stations in source with target region

Bomford et al. 2010

- Mean successful > mean failed
- Variety of climate types

Howeth et al. 2016

- Climate match –
 75-81% accuracy
- Extreme (cold) climate region
- USFWS ERSS risk screening tool (Hoff 2014)

Range of Tropical Fishes?

- Black Acara tropical; established in FL
- Chronic lower lethal temp = ~9°C

Differing Protocols

- Bomford et al. 2010 and Hoff 2014
 - Use native and established range as source
- Bomford et al. 2010
 - Do not use source locations within RA area
 - A priori analysis
- Hoff 2014
 - Use all source locations (includes RA area)
 - Post hoc analysis

Objectives

- Can CLIMATCH distinguish between successful and failed invasions in FL?
- Objectives
 - Test for mean differences in climate match between successful and failed freshwater fishes using 2 common protocols
 - Post hoc
 - A priori
 - (Incorporate into a decision tree analysis?)

Peninsular Florida

- About 100 species paired down to:
 - 34 successful
 - 36 failed species
- Cold temperatures important!

Köppen-Geiger Zones

Post Hoc vs. A Priori

Post Hoc vs. A Priori

Clown Knifefish: Chronic Lower Lethal Temp = 12°C

Post Hoc - A Priori Scores

A Priori Match Categories

- Climate 6 Score categories ERSS (Hoff 2014)
- Categories not useful in Florida

Climate 6 Score	Climate Match Category	Failed Species	Successful Species
$0.000 \le X \le 0.005$	Low	3	1
$0.005 \le X \le 0.103$	Medium	4	4
≥ 0.103	High	29	29

Post Hoc vs. A Priori

- Climate is suitable if species already established – tautology!
- More useful to study spread?
- Care needed if used as the basis of a predictive tool

- Needed for proactive risk assessment
- CLIMATCH best for pre-entry analysis (Froese 2012)
- Was not predictive in Florida

Why Does it Not Work?

- Post hoc vs a priori
- 16 Variables
- Hospitable climate
- Source region
- Life history traits
- Biotic interactions
- (invasion history & propagule pressure)

Way Forward

- Important variables?
- Other SDMs?
- Habitat variables
- Physiological tolerances

Prediction

- Predictions may not agree
- Burmese Pythons

Rodda et al. 2009

Pyron et al. 2008

Expanding/Contracting?

