The performance of biocide and non-biocide coatings to prevent biofouling by invasive and non-native species in Newfoundland

Ashley Bungay ^{1 2}, Cynthia H. McKenzie ², Kyle Matheson ², Erika F. Merschrod S. ³, Cyr Couturier ¹.

Biofouling in Newfoundland Coastal Waters

- Biofouling is the unwanted growth of aquatic organisms on the surface of submerged substrates.
- Biofouling occurs in four steps
 - Conditioning film
 - Primary colonizers
 - Macroalgal zoospores
 - Invertebrate larvae
- Newfoundland has a subarctic climate with a water temperature range of -1-16°C throughout the year
- In Newfoundland there are three invasive tunicate species which foul different surfaces
 - Golden Star (Botryllus schlosseri)
 - Violet (Botrylloides violaceus)
 - Vase (Ciona intestinalis)

Biofouling and the Aquaculture Industry

- Biofouling affects the aquaculture industry
 - Physical damage to the shells of shellfish
 - Mechanical interference of the shells for shellfish
 - Competition and reduction of nutrients
 - Increase weight and loss of stock and equipment
 - Creating suitable habitats for harmful pathogens
- Biofouling control in Aquaculture
 - In Situ cleaning
 - Lime, brine, acetic acid, fresh water immersions
 - High pressure washing
 - Air drying
 - Antifouling net coatings
- Vase tunicate has had a large impact on aquaculture in other parts of Atlantic Canada
 - It was estimated that fouling by tunicates in PEI costs \$5 million annually to control¹

Types of Antifouling Coatings

- Biocide Antifouling Coatings
 - Self polishing copolymers (SPC)
 - Release biocides through a reaction with water²
- Non-Biocide Antifouling Coatings
 - Fouling release coatings (FRC)
 - Relies on physical properties (smoothness) to reduce the attachment strength of fouling organisms³

Biocide Toxicity

- Tin was the most commonly used SPC coating before is global ban in 2008 due to its high toxicity⁴
- Today copper is the most common biocide used

Because of copper's toxicity other coatings such as FRC are being used

Methodology-Antifouling Potential

- ▶ 12 different antifouling coatings and 2 wood controls
- Random distribution of the coatings on painted back panel

- 5 panels were deployed at each of four sites
 - Foxtrap
 - Arnold's Cove
 - Little Bay
 - Burin

Methodology-Antifouling Products

Methodology / Mithodining i			
Paint	Antifouling Property	Biocide/Non-Biocide	
Interlux Micron CSC	Cuprous oxide	Biocide	
Interlux Epoxycop	Cuprous oxide	Biocide	
Interlux BottomKote	Cuprous oxide	Biocide	6
Interlux Tri-Lux II	Cuprous thiocyanate	Biocide	
ePaint ZO	Zinc pyrithione	Biocide	
ePaint ECOMINDER	Zinc pyrithione	Biocide	
Micron CF	Zinc pyrithione/Econea	Biocide	
ePaint EP21	Silicone	Non-Biocide	
Hullspeed 3000 series	Silicone	Non-Biocide	
Interlux Brightside	Polyurethane	Non-antifouling	
Matchless Super Marine	Enamel	Non-antifouling	

Methodology-Antifouling Potential

- Monthly photos taken from June to December
- Percent coverage of biofouling calculated
- Photos processed using GIMP ver.2.8.18 and Image J ver. 1.50i

Plot of the Proportion Coverage by Total Biofouling with Respect to Different Coating Types and Sites

There is a significant difference of percent coverage by total biofouling with respect to coating type G=513.814,p<2.2E-16 There is a significant difference in the percent coverage by total biofouling with respect to sampling date G=473.07,p<2.2E-16 There is a significant difference in the percent coverage by total biofouling with respect to site G=33.067,p=3.118E-7

Plot of the Proportion Coverage by Golden Star Tunciate with Respect to Different Coating Types and Site

There is a significant difference in the percent coverage by golden star with respect to coating type G=299.3,p<2.2E-16 There is a significant difference in the percent coverage by golden star with respect to sampling date G=122.52,p<2.2E-16 There is a significant difference in percent coverage by golden star with respect to site G=259.19,p<2.2E-16

Plot of the Proportion Coverage by Vase Tunciate with Respect to Different Coating Types and Sites

There is a significant difference in the percent coverage by vase with respect to coating type G=151.07,p<2.2E-16 There is a significant difference in the percent coverage by vase with respect to sampling date G=91.527,p<2.2E-16 There is a significant difference in the percent coverage by vase with respect to site G=70.545,p=3.262E-15

Summary

- Copper and Zinc based coatings were the most effective against biofouling
- FRC were not used to manufacturers specification and would act differently on a vessel
- Non-antifouling marine paints are not effective against biofouling and should not be used on the hull of a vessel

Future Work

- Scanning Electron microscopy to get surface topography information
- Determine leaching rates from select paints

Acknowledgements

- David Grant
- Vanessa Reid
- Ashley Newhook
- Cailey Ryan
- Andrew Perry
- Dan Porter
- Jennica Seiden
- Phil Sargent
- George Bishop
- Zach Ryan
- Haley Lambert
- Bob Gregory
- Chris Dawe
- Tracy Granter
- Mark Santos

- Marsha Clark
- Jillian Westcott
- Jason Nichols
- Zachery Strowbridge
- Megan Mews
- Michael Moors
- Joe Banoub
- David Schneider
- George Sheppard
- Terri Wells
- Small Craft Harbours
- Terry Daley
- Harbour Authorities

Questions?

anb2127@mun.ca