

- Previous UV research
 - Quagga mussel settlement prevention
 - Hydropower facilities along Colorado River
- UV treatment: passive and does not require discharge permitting

- UV dose
 - Lamp intensity, exposure time (flow), UVT (water clarity)

- Quagga mussel UV study at Davis Dam, AZ
- Atlantium Technologies Ltd. medium pressure UV unit
- Tested doses between 20 and 100 mJ/cm²
 - Settlement reduction between 88-99%

- Atlantium UV units installed at Parker Dam
- Additional biofouling issues
 - Colonial hydroid (Cordylophora caspia)
 - Freshwater sponge (*Ephydatia sp.*)
 - Bacterial growth

Goal: Determine if UV treatment reduces all types of biofouling

- Colonial hydroid
 - Invasive species
 - Significant biofouling potential at hydropower facilities
 - Carnivorous benthic predatorfeeds on zooplankton
 - Colony growth and dispersal occurs by sexual reproduction (planula) and asexual budding (fragmentation)

- Tests on multiple cooling lines
- Flow = 340 gpm
- Limited does control
 - No flow meter
- Bioboxes
 - Upstream and downstream
 - 2 gpm flow through
 - Settlement plates

- Monthly hydroid planula sampling
 - 20-µm plankton tow net
 - Microscopically analyzed and suspects genetically analyzed (PCR)
- No planula observed during 2 year study
 - Planula settle quickly after release
- Colonization of bioboxes likely a result of fragmentation

- Dry weight of biomass accumulation
 - 6 plates per biobox
 - 3 monthly
 - 3 six months
- Hydroid colony counts
 - Plate counts not representative
 - Hydroid settles on walls and bottom of the biobox

- Microbial monitoring
 - Installed small bioboxes with 100 µm cartridge filters
 - Adenosine triphosphate (ATP)
 - Luminultra® test kit
 - Biological activity reaction tests (BART)

Issues

- Periods of untreated water entering downstream bioboxes
 - Head pressure resulted in backflow of untreated water
 - When cooling water flow stopped and UV turned off automatically
 - Unit 4: 192 hours
 - Unit 3: 5 hours
 - Installed system to stop backflow into bioboxes in 2017
- Dose was variable during tests
 - Periods of time when dose=0
 - Unit 4: 7 hours
 - Unit 3: 9 hours
- Operational conditions in hydropower facilities may limit control

Results

- Despite test contamination with untreated water visual observations indicate UV reduced biofouling
 - Mussel settlement consistently reduced
 - Thick layer of bacterial growth observed in untreated biobox
 - Not as consistently effective for hydroid and sponge
- Hydroid and sponge
 - Asexual reproduction
 - Possibly requires higher dose
 - Settlement during outages
- Reduced sponge numbers in 3 month test
 - **Control= 112**
 - UV Treated= 3

Monthly Dry Weight per m²

• Control – Unit 4

• UV Treated – Unit 4

96% organic (LOI test)

• Control – Unit 3

• UV Treated – Unit 3

Control

UV Treated

Control Settlement Plates

UV Treated Settlement Plates

Observations

- O&M reduced at Parker Dam since UV installed
- Before UV
 - 16 coolers replaced per year
 - 640 staff hours + materials
- After UV
 - 4 coolers replaced per year
 - No units re-packed
 - Less scale on heat-exchangers
 - 160 staff hours + materials

