Investigation of the Edwards Protocol on Dreissenid Mussels

Kelly Stockton-Fiti KASF Consulting

Christine M. Moffitt

&

Department of Fish and Wildlife, University of Idaho

Edwards Protocol

- Developed in the <u>Great Lakes</u> region to limit risks of transfer of veligers during fish stocking
- Used KCl and Formalin with limited risk to fish
 - 750 mg/L KCL for 1 h
 - Add 25 mg/L formalin for 2 h
 - 100% mortality to zebra mussels in bench and limited field trials

North American Journal of Aquaculture 62:229-236, 2000

© Copyright by the American Fisheries Society 2000

Prevention of the Spread of Zebra Mussels during Fish Hatchery and Aquaculture Activities

WILLIAM J. EDWARDS, LISA BABCOCK-JACKSON, AND DAVID A. CULVER*

North American Journal of Aquaculture 64:220-223, 2002. © Copyright by the American Fisherins Society 2002.

> Field Testing of Protocols to Prevent the Spread of Zebra Mussels *Dreissena polymorpha* during Fish Hatchery and Aquaculture Activities

WILLIAM J. EDWARDS,* LISA BABCOCK-JACKSON,1 AND DAVID A. CULVER

Trials with Quagga Mussels at Colorado River Hatcheries Not Successful

- Willow Beach NFH, AZ
 - Low veliger mortality even at >2,000 mg/L KCl (Sykes 2009)
 - Veligers counted dead initially but in recovery alive
- At Lake Mead FH, NV
 - Low mortality (Pucherelli et al. 2014)
 - Used Pueblo, CO well and reservoir water & achieved higher mortality

Recovered live veliger (Sykes 2009)

Dead Veliger (Pucherelli et al. 2014

Zebra Veligers & Settlement

- Kansas DNR
 - Filled 200 gal tanks with reservoir water
 - Edwards protocol treatment at 23°C
 - Zebra veligers taken out of tank and put into aquarium
 - After 305 days settlement not sig. different from control treatment

Discrepancies: Potential Hypotheses

Hypothesis	Edwards et al. (2000 & 2002)	Sykes (2009)	Pucherelli et al. (2014)	Kansas DNR (2015)
Recovery Time	None	2-6 h	24+ h	10 months settlement
Species	Zebra	Quagga	Quagga	Zebra
Water Temp. (°C)	20 & 27.6	18	13	23
Water Chemistry Sodium Conc. (Moffitt et al. 2016)	Great Lakes Region Low to Mid (0.2-0.5 mS/cm)	Colorado River High (1.0 mS/cm)	Colorado River High (1.0 mS/cm)	Kansas Mid (0.5 mS/cm)
Testing Vessel	Bench & Hatchery Truck	Bench	Bench	Hatchery Truck
Fish Present	No & Yes (6 g/L)	No	No	No
Purity of Reagents	Analytical & Industrial	Analytical	Analytical	Industrial

Objectives – Edwards Protocol

- Bench Trials: Pursue the effects of temperature on the toxicity response with both zebra and quagga veligers
- Bench Trials: Evaluate the efficacy in relation to water quality (conductivity and Na+)
- Bench Trials: Compare the toxicity response using different grades of potassium chloride
- Field Trials: Evaluate the efficacy in replicated tests with a transport truck at typical low and high fish hauling densities (0.8 and 0.3 lbs/gal)

Location of Study- Zebra Mussels

- Fairport State Fish Hatchery, Fairport, IA
- Mississippi River Water Source (August 2016)
 - Water Temperature: 26°C (± 1° C)
 - Water Conductivity: 0.37 mS/cm
- Zebra mussel veligers
 - Morphological assessment
 - DNA analysis (BOR ROLES lab)
 - Assessment of adults

Methods- Bench Studies

- Conductivities
 - Low (0.37 mS/cm): no NaCl addition
 - Medium (0.5 mS/cm): addition of NaCl
 - High (1.0 mS/cm): addition of NaCl (*level of Colorado River*)
- 4 Temperatures: 27, 23, 18, 15°C
- Muriate of potash, Parasite-S formalin
- Rinsed and used Fast Green stain for status
- Assessed mortality and compared results with chi-squared analysis

Zebra Veliger Bench Study

- Confirms toxicity related to conductivity (Na+) and showed a temperature effect
- Low temperatures had veliger survival regardless of conductivity of water
- Temperature and mortality increased together and achieved 100% mortality
- As conductivity increased mortality decreased

Fish Hauling Truck Study

- Chemicals: KCl, formalin
- Filled trucks at night, added KCl
- Fish loaded into tank in morning
- Concentrated veligers add to all tanks to start trials
- Aerators with O₂

Subsample of 2/3 of water

analyzed

Replicated over 3 days

HD Fish Chemicals

HD Fish Control

Fish Hatchery Truck Results

- 100% veliger mortality in treated without fish
- Sample counts low in fish treatments due to precipitating mucous and organics from water and made analysis difficult
- All low fish density treatments had no surviving veligers. One live veliger was found in a high fish density treatment with well water not river water

HD Treated Sample Sludge

Fish Truck Water Quality

Water Source	Rep	Temp (°C)	рН	Sp. Cond (mS/cm)	Salinity (ppt)	TDS (mg/L)	Sodium (mg/L)
Filtered							
River	1	27.69	8.34	0.347	0.162	0.235	<10
Filtered							
River	2	27.79	8.21	0.355	0.17	0.231	<10
Filtered							
River	3	25.03	8.79	0.312	0.15	0.203	<10
Well	3	24.2	8.03	0.612	0.3	0.398	33

Quagga Veliger Bench Study at Willow Beach NFH

- 1.0 mS/cm conductivity Colorado River water
- 4 temperatures: 27, 23, 18, 15°C
- Analytical vs muriate of potash KCl

Quagga Veliger Bench Study Results

- Mortality between 50 and 80% in all treatments
- No trend showing that analytical KCl is different from potash KCl

Quagga vs. Zebra Response at 1.0 mS/cm

Analysis of life stage

	D-shaped	Small Umbonal	Large Umbonal	Pediveligers
Zebra mussels (N=1031)	75.1%	19.5%	5.4%	0.0%
Quagga mussels (N=1881)	20.7%	23.1%	31.7%	24.5%
Quagga Mortality	100%	100%	79.2%	26.2%

- Zebra mostly Dshaped
- Quagga mixed
- Mortality highest in small life stages and higher temperatures

Hypothesis Revisited

Discrepancy	Edwards et al. (2000 & 2002)	Sykes (2009)	Pucherelli et al. (2014)	Kansas DNR (2015)	This Study
Recovery Time	None	2-6 h	24+ h	10 months settlement	Stained
Species	Zebra	Quagga	Quagga	Zebra	Zebra & Quagga
Water Temp. (°C)	20 & 27.6	18	13	23	15, 18, 23, 27
Water Chemistry Sodium Conc. (Moffitt et al. 2016)	Great Lakes Low to Mid (0.2-0.5 mS/cm)	Colorado River High (1.0 mS/cm)	Colorado River High (1.0 mS/cm)	Kansas Mid (0.5 mS/cm)	Low, Med, High (0.37, 0.5, 1.0 mS/cm)
Testing Vessel	Bench & Hatchery Truck	Bench	Bench	Hatchery Truck	Bench & Hatchery Truck
Fish Present	No & Yes (6 g/L)	No	No	No	No & Yes (35 & 95 g/L)
Purity of Reagents	Analytical & Industrial	Analytical	Analytical	Industrial	Analytical & Industrial
Veliger Size	D and post D- shaped	Mixture	Mixture	Mixture to Large	D and Post D & Mixture

Conclusions From Studies

- Temperature affects veliger mortality
 - Lower temperatures achieved lower mortality
- Higher conductivity, especially sodium, increases survival
- Edwards protocol successfully killed veligers in fish hauling tanks at lower conductivity (0.37 mS/cm)
- Trials with fish confounded assessment due to heavy mucus and organics in water
- No difference in response to type of KCl used in testing
- Quagga mussels lower mortality than zebra mussels at same conductivity but life stage dependent

Edwards Protocol Still a Viable Method?

- The protocol should be used with prior knowledge of
 - Veliger life stage
 - Water temperature
 - Water conductivity (Sodium concentration)
- Optimal period of use at Fairport FH
 - June through August
 - Life stage needs to be known for fall
- At low temps, high conductivity, or large veliger life stages
 - Higher concentrations of KCl and formalin
 - Longer duration times

Mississippi River at Fairport Fish Hatchery

Acknowledgements

- Funding: Mississippi River Basin Panel
- Andy Fowler, Melanie Harkness, and Adam Thiese at Fairport Fish Hatchery, IA
- Jay Radacille and staff at Rathbun State Fish Hatchery, IA
- Additional Funding and Support: Pacific States Marine Fisheries Commission, USGS, USFWS

