Comparing environmental DNA (eDNA) and traditional surveys of diversity and relative abundance: implications for invasive fishes

Nick Sard, Seth Herbst, Genelle Uhrig, Jeannette Kanefsky, and Kim Scribner

Fort Lauderdale, Florida Oct 24, 2017

Importance of Early Detection

Methods and Strategy for AIS Detection

- Standardized statewide Status and Trends sampling program to monitor fish populations
- Also used for AIS detection, but how effective is this method?
- Traditional gear has been evaluated for maximizing early detection in Great Lakes harbors
- Has led to targeted AIS sampling in high risk harbors in the Great Lakes (implemented by USFWS)
- Little work has been done on inland lakes


```
Sampling Design for Early Detection of Aquatic
Invasive Species in Great Lakes Ports
Joel C. Hoffman, Joshua Schloesser, Anett S. Trebitz, Greg S. Peterson,
Michelle Gutsch, Henry Quinlan & John R. Kelly
```


eDNA Sampling for AIS

- Emerging genetic approaches (eDNA barcoding) used to detect species at rare or low densities
- Primarily been used for Bighead and Silver Carps

Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program

What is DNA Barcoding?

- Plants and animals constantly extrude DNAs in environment (eDNA)
- Take water samples, extract eDNAs, and test for presence of a species
- Used to detect low abundance species (e.g. AIS and T \& E)
- Single species focused

eDNA Meta-barcoding Characterizes Entire Communities

- Standardized regions of DNA
- Usually book-ended by highly conserved regions - universal primers
- Contain areas with greater interspecific differentiation or sequence divergence
- Common regions used for barcoding
- Cytochrome oxidase I (mtDNA)
- 12 S and 16 S ribosomal unit (mtDNA)
- RuBisCo large subunit (plants)

Base pair position

Goals: Evaluate effectiveness of Status and Trends monitoring program for AIS detection and the added value of incorporating eDNA sampling

- MDNR sampled eight lakes in 2016
- Part of Status and Trends Survey
- Multiple gear types used
- Sampled for eDNA one week following traditional sampling
- We collected 50 ± 8 (mean \pm SD) eDNA water samples from each lake
- 400 total samples collected

53 ha

\qquad

Ocqueoc Lake

r

Fisheries Division Status and Trends Sampling Sites

MSU eDNA Sampling Sites

Comprehensive Sampling Strategy

eDNA Metabarcoding Process to Determine Community Composition

Status of eDNA project

Bioinformatics Stringency Criteria for Species Detection

1. Liberal criteria for AIS observation

- Before any filtering based on negative (no DNA) controls
- For each lake:
- Were any AIS sequences observed?
- In how many samples?
- Mean number of reads per sample?
- May warrant additional sampling

2. Conservative criteria for community diversity estimates

- Ask the same questions above
- Account for negative controls, and remove unclassified columns
(can bias species detection low)
- Compare measures of diversity with traditional methods

NRC
Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering
Nathan T. Evans, Yiyuan Li, Mark A. Renshaw, Brett P. Olds, Kristy Deiner, Cameron R. Turner, Christopher L. Jerde, David M. Lodge, Gary A. Lamberti, and Michael E. Pfrender

eDNA sample				
1	11,100	691	0	\cdots
2	3,334	52	0	\cdots
\cdots	\cdots	\cdots	\cdots	\cdots
400	X	3,076	X	\cdots

52 Unique classifications
(48 to species; 4 only to genus)

Haithco Lake: eDNA and Traditional Community Matrices

Haithco Lake: eDNA and Traditional Community Matrices

Haithco Lake: eDNA and Traditional Community Matrices

Correlation of Species Occupancy (eDNA) and Species Rank (traditional)

Correlation of Species Occupancy (eDNA) and Species Rank (traditional)

Total Species Detection: eDNA vs. Traditional Methods

Mean Species Detection: eDNA vs. Traditional Methods

Variation among eDNA and Traditional Sampling Approaches

Holloway Reservoir: Species Accumulation Curve with Traditional Gear

Species Accumulation Curves: Individual Traditional Methods

- Boomshocker
- Experimental gillnet
- ' Large mesh fyke net
. Seine
- Small mesh fyke net
- Trap net

Holloway Reservoir: Traditional Gear Species Accumulation Curve

Species Accumulation Curves: eDNA vs. Combined Traditional Methods

eDNA Approach Effectively Detected Round Goby

eDNA Approach Effectively Detected Non-native Species

Summary

- More species are detected in a single eDNA sample
- eDNA samples are effective at detecting AIS
- Comprehensive approach for species detection
- Agency response will be dependent on risk and level of uncertainty
- Consider contamination sources
- Future work with multiple loci
- Finish 12S processing
- Process 16S data
- Approach could be use to sample for
- T\&E
- Non-fish species
- Cost needs to be considered for implementation

Acknowledgements

Funding

Great Lakes Restoration Initiative Michigan DNR

Field Assistance

Michigan DNR
Michigan DEQ
Michigan State University Smith-Root eDNA Backpack (ANDe)

Fish Illustrations within provided by Joseph R. Tomelleri ©

Mothur pipeline specifics

Merged PE to reads

Aligned reads to reference database

Removed poorly aligned reads based on size (>152 bp or < 139 bp) and homo-polymer size (>5 nucleotides)

5 M reads (250 K unique reads)

Assembled Operational Taxonomic Units (OTUs) at 99% identity

62 K OTUs

For each OTU,	For each OTU,		
classified based			
on taxonomic			
database		\quad	many reads
:---			
were observed			
in each sample			

Removed
42 K OTUs non-fish OTUs

(3.3 M reads)

BLASTed OTUs not classified to species

Sample	OTU1	OTU2	\cdots	OTU62000
ID1	1000	56	\ldots	1
ID2	334	1	\cdots	0
\ldots	\ldots	\ldots	\cdots	\cdots
ID413	2	386	\cdots	2

52 Unique classifications (48 to species)

Sample	Perch	Bluegill	\ldots	Redhorse (UC)
ID1	11100	690	\ldots	1232
ID2	3334	45	\ldots	0
\ldots	\ldots	\cdots	..	\cdots
ID413	2	3076	..	2

Condensed matrix to unique classifications multiple OTUs represent the same classification
*Modified some classifications due to ack of resolution in database to genus (Bullhead, gar, redhorse, shiners)

Little to no fish DNA contamination in samples

