Feasibility and Efficacy of Three Methods of Zebra Mussel Larvae Detection in Lake Winnipeg

Sharon Lavigne, Mattias Johansson, Daniel Heath, Hugh MacIsaac

GLIER, University of Windsor

Dreissena spread

Lake Winnipeg

- Manitoba
- Two basins
- Zebra mussels
 - 2013 detected in south basin
 - 1 veliger reported in the north basin in October 2015
- Low abundance throughout

Janusz (2015), personal communication

Project goals

- Detection of zebra mussels in Lake Winnipeg
- Comparison of methods of detection

Null Hypotheses

- Increased sampling intensity does not change probability of detection of NIS
- No difference in detection success in the south and north basin
- Different methods of detection would result in the same success rates

Methods

- July 2015
- Sampling sites
 - Grand Rapids
 - Dauphin River
 - Calder's Dock
 - Hnausa
 - Winnipeg Beach

Methods

- 100 plankton tows at each site
 - 64µm plankton nets
- Plankton collected and stored in 95% ethanol
- Filtered out plankton larger than 300µm
- Concentrated into 50mL

Conventional Microscopy

- Cross-polarized light microscopy
 - Entire sample analyzed and enumerated
 - Distinct shape

Frischer et al. (2012); Johnson (1995)

Flow Cytometry and Image Analysis

- Flow Cytometer And Microscopy (FlowCAM)
 - Fitted with XPL (cross-polarized lenses)
 - Subsample (3/50 of filtered)
 - Images of each particle is captured and stored for analysis

Environmental DNA (eDNA)

- DNA detection
 - Subsample (1/50) of filtered plankton
 - DNA extraction
 - PCR amplified with species-specific primers

Microscopy: Abundance

Flow Rate

Increased Mortality

Horvath & Crane (2010)

Veliger Prevalence in Samples

Veliger Prevalence in Samples

Veliger Prevalence in Samples

Cost and time

	Microscopy	FlowCAM	eDNA
Start up cost (CAD\$)	10,441.60	81,499.73	5,835.00

Cost and time

	Microscopy	FlowCAM	eDNA
Start up cost (CAD\$)	10,441.60	81,499.73	5,835.00
Cost per sample (CAD\$)	7.90	6.78	1.87

Cost and time

	Microscopy	FlowCAM	eDNA
Start up cost (CAD\$)	10,441.60	81,499.73	5,835.00
Cost per sample (CAD\$)	7.90	6.78	1.87
Time (Hours)	198	167	24

Limitations

- Possible artifact of subsampling
- FlowCAM volume restricted by time taken to process
- eDNA volume restricted by equipment

Significance

- Changes in sampling strategy
- Detection methods
 - Microscopy mid-range in cost and longest time taken, but highest sensitivity
 - eDNA lowest cost and fastest relatively high sensitivity

Acknowledgements

- Dr. Doug Haffner
- Dr. Aaron Fisk
- Dr Charles Ramcharan
- Colin van Overdijk
- MacIsaac Lab
- Heath Lab
- Joelle Pecz
- Jezel Gicole
- Taylor Haludek
- Ian MacIsaac
- Sarah-Jayne Collins

Multiple Stressors and Cumulative Effects in the Great Lakes:

An NSERC CREATE Program to Develop Innovative Solutions through International Training Partnerships