Using a high-throughput sequencing assay to assess dreissenid mussel communities

Nate Marshall^{1,2}, Katy Klymus¹ & Carol Stepien^{1,2}
Genetics & Genomics Group

¹Department of Environmental Sciences, University of Toledo

²NOAA Pacific Marine Environmental Lab, Seattle

Outline

- Dreissena invasion and background
- HTS assay design
- Evaluating assay
 - 1. Mock Communities
 - 2. Aquaria Samples
 - 3. Field Samples
- Ecological Implications

Dreissena Invasion

- Native to Ponto-Caspian region
- Zebra mussel invade GL ~1986
- Quagga mussel invade GL ~1989

Zebra

Quagga

Negative economic and ecological impacts

Dreissena Invasion

- Difficult to distinguish species morphologically
 - High phenotypic plasticity
 - Especially difficult at veliger larvae stage

ZM = Zebra
D. polymorpha

COI Assay Design

Evaluating the Assay

- 1. Mock Communities
- 2. Aquaria Experiments
- 3. Field Samples

Mock Communities

QM=Quagga

ZM=Zebra

	MC1	MC2	MC3	MC4	MC5	MC6	MC7	MC8
QM A	6000	3000	1500	750	375	188	94	47
ZM A	3000	1500	750	375	188	94	47	6000
ZM B	1500	750	375	188	94	47	6000	3000
ZM C	750	375	188	94	47	6000	3000	1500
QM B	375	188	94	47	6000	3000	1500	750
QM C	188	94	47	6000	3000	1500	750	375
ZM D	94	47	6000	3000	1500	750	375	188
ZM E	47	6000	3000	1500	750	375	188	94

Testing the Assay

Log Expected Proportion of Haplotype

Observed

Evaluating the Assay

- 1. Mock Communities
- 2. Aquaria Experiments
- 3. Field Samples

Aquaria Experiments

- Each tank filled with 15 L water
- 500 mL water sampled at 0, 2, 7, and 14 days
- Water filtered through 0.2µm PES filter
- Resultant eDNA run with marker COIA

Tank B			
ZM = QM			

	Zebra	Quagga
Individuals (<i>N)</i>	30.0 (83%)	6.0 (17%)
Biomass (g)	5.8 (75%)	2.0 (25%)

Zebra	Quagga
17.0 (55%)	14.0 (45%)
2.8 (52%)	2.6 (48%)

Zebra	Quagga
16.0 (62%)	10.0 (38%)
4.2 (30%)	9.8 (70%)

ZM A

Aquarium 3

Aquarium 3

Tanks A & C represented individuals early,

ZM A

- Tanks A & C represented individuals early
- But shifted to biomass late
- Tank B shifted to closer representation over time, but still off. Possibly due to mussel death.

Evaluating the Assay

- 1. Mock Communities
- 2. Aquaria Experiments
- 3. Field Samples

Dreissenid eDNA (water & plankton)

- Water from benthos & surface at 3 mid-river sites
- Sequencing compared with extensive morphological survey by the Cary Institute
- >3,000 mussels/site Plankton collected
- Bimonthly in Lake Erie May-September 2016
- Once in late May 2016 from 4 Hudson River sites

Hudson River Water Samples

Dreissenid Veligers in Plankton

Comparison of dreissenid composition between 16S and COIA assays

- Compared proportion of dreissenid DNA from plankton with our DreCOIA and Mol16S assays
- Samples from the Hudson River and South Bass Is., Lake Erie
- Species proportions are significantly different between the two sites
- Species proportions did not differ between the markers at either site

Mol16S from Klymus et al. 2017

Hudson River Plankton

 Lower number of quagga mussel veligers up river

Albany

Lake Erie Plankton

Plankton collected from June-September 2016 at SBI

Sampling Date

Lake Erie Plankton

Plankton collected from June-September 2016 at MRM

- Large species/ community changes throughout summer
- similar to HR, geographically close to SBI

Sampling Date

NMDS plot of environmental samples

- Hudson River Plankton

 Maumee River Plankton

 South Bass, Is., Lake Erie Plankton

 Hudson River eDNA water
- SBI significantly influenced by QM abundance and diversity
- HR plankton samples closely align with HR eDNA samples
- MRM ecologically similar to HR, with some possible influence from the east

Conclusions

- 1. Careful assay design required for accurate results
- 2. HTS can address population genetic information
- Aquaria tests show positive relationship between eDNA and biomass/individuals
- 4. Surprisingly, surface water samples showed closer relationship to the mussel community
- 5. Assay is useful for demonstrating spatial/temporal differences in dreissenid communities

Support: Past and Present members of the Stepien Lab

Sampling: Cary Institute (Dr. Dave Strayer, Heather Malcom, David Fischer)

Funding: EPA Great Lakes Restoration Initiative

Sigma Xi Grant-In-Aid of Research

Hudson River Foundation Mark B. Bain Graduate Fellowship

University of Toledo Robert N. Whiteford Scholarship

Malacological Society of London Travel Award

Project Goal

Environmental DNA (eDNA)

From eDNA to Sequence Data

Questions?

NMDS of Plankton Samples

- Sites group by ecological similarity
 - Differentiation driven by species abundances

NMDS1

nMDS of single species diversity

Similar trends, HR grouped with BSR

COIA

Log Expected Proportion of Haplotype

- Tanks A & C represented individuals early,
- But shifted to biomass late

