

Influence of phylogenetic community structure on introduced fishes in the southeast United States

Matt Neilson and Pam Fuller

USGS Nonindigenous Aquatic Species Database Wetland and Aquatic Research Center, Gainesville, FL

Introduced species

Introduced taxa have potential to impact native species/communities

Not all species have equal impacts in communities

Not all introductions are successful

What properties of native communities might aid/prevent introduction of non-natives?

What properties of non-natives might influence their establishment?

Invasion success and ecological theory

- Introduced taxa
 - Broad environmental tolerance/generalist, habitat matching, propagule pressure, enemy release
- Native communities
 - Species diversity/richness, niche occupation, disturbance
- Phylogenetic distance as proxy measure of ecological similarity

Types of phylogenetic community structure

Darwin's naturalization conundrum

Thuiller et al (2010). Diversity and Distributions 16: 461-475

Darwin's naturalization conundrum

- Non-native species with close native relatives should have lower colonization/establishment success due to competitive exclusion
- Non-native species with close native relatives should have higher colonization/establishment success due to pre-adaptations to local environmental conditions (environmental filtering)

Questions

Is phylogenetic diversity of fish community related to invasion susceptibility/success?

Are successful/unsuccessful invaders in a community more closely/distantly related to that community

Study region

HUC 03 – South Atlantic - Gulf

Methods

- Native fish distributions
 - NatureServe digital distribution maps v. 3.0

- USGS NAS database
 - Successful (established and eradicated)
 - Failed (failed and extirpated)
- Phylogenetic tree
 - DNA sequence data from Genbank

Methods

- Estimate metrics of phylogenetic community structure
 - Mean phylogenetic distance (MPD) mean distance among all community members
 - Mean nearest neighbor distance (NN) mean distance to closest relative
 - Standard effect sizes

$$SES_{X} = \frac{X_{obs} - mean(X_{rand})}{SD(X_{rand})}$$

Methods

- Is phylogenetic diversity of fish community related to invasion susceptibility/success?
 - Compare native community phylogenetic diversity to # successful/failed species
- Are successful/unsuccessful invaders in a community more closely/distantly related to that community
 - Compare phylogenetic distance between successful/failed species to native communities

Results

- HUC 03
 - 364 native species
 - 132 successful introduced species
 - 60 failed introduced species

Distribution of species – HUC8

Distribution of species – HUC6

Increasing phylogenetic diversity of communities reduces number of successful species at HUC8

Increasing phylogenetic diversity of communities has no effect on failed species at HUC8

Increasing phylogenetic diversity of communities does not reduce number of successful species at HUC6

Increasing phylogenetic diversity of communities has no effect on failed species at HUC6

Successful species more closely related to native community than failed ones

MPD t = -2.55 df = 107p = 0.012

NN t = -6.71 df = 107 p << 0.001

Successful species more closely related to native community than failed ones

MPD t = -2.82 df = 111 p = 0.006

NN t = -5.41 df = 114 p << 0.001

Conclusions

- No impact of phylogenetic diversity on establishment failure
- Phylogenetically diverse/even communities show lower numbers of successful introduced species than clustered ones
 - Diversity/evenness = wider portion of occupied niche space?

Conclusions

- Successful invaders are more closely related to native fish communities than failed species
 - Opposite pattern than observed in other systems
 - Suggests environmental filtering/pre-adaptation rather than release from competitive exclusion

Future directions

- Smaller watershed scale (HUC10/12 vs HUC8)
- Incorporate ecological traits to more directly measure/compare niches of native and introduced taxa
- Landscape analysis/GIS
 - Environmental layers
 - Physiographic boundaries
 - Habitat type lentic vs. lotic habitats

Acknowledgements

Discussion/advice:

Noel Burkhead Matt Cannister Steve Walsh

Data providers:

All contributors to USGS NAS database

