Application of a watch list to inform AIS surveillance in the Laurentian Great Lakes

Andrew Tucker¹, W. Lindsay Chadderton¹ Alisha Davidson², and Donna Kashian²

> ¹The Nature Conservancy ²Wayne State University

> > October 26, 2017

Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

Long Term Goals for the Great Lakes Ecosystem Fish safe to eat Water safe for recreation Safe source of drinking water All Areas of Concern delisted Harmful/nuisance algal blooms eliminated No new self-sustaining invasive species Existing invasive species controlled Native habitat protected and restored to sustain native species

Objectives

Invasive Species

Prevent new introductions of invasive species

Control established invasive species

Develop invasive species control technologies and refine management techniques

Commitments

Block pathways through which aquatic invasive species can be

Conduct early detection monitoring activities

 Work with Great Lakes states to conduct rapid response actions or exercises

Implement control projects for GLRI-targeted invasive species

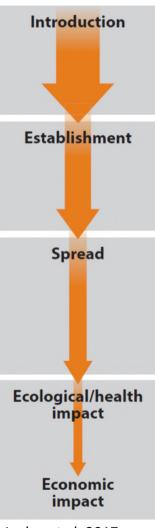
 Develop/enhance technologies and methods to prevent the introduction and to control the spread of invasive species

 Develop/enhance invasive species specific collaboratives to support rapid responses and communicate the latest control and management techniques

"establish a comprehensive program for detecting and tracking newly identified aquatic invasive species"

Aquatic Invasive Species Interstate Surveillance Framework for the U.S. Waters of the Great Lakes

- (a) Develops a species watch list.
- (b) Identifies priority locations for surveillance.
- (c) Develops monitoring protocols for surveillance.
- (d) Provides recommendations for sharing information.


- What species are we looking for? What taxa?
- How will they get here/spread?
- Where will we find them?

METHODS

Compiling a list of candidate species

- Regulated species lists
- GLANSIS watch list, non-indigenous + range expanders
- FWS ERSS (available online)
- DFO (fish, mollusk, plants)
- Internal
 - GLWQA Annex 6 assessment
 - Erie Canal assessment

N = 353

Lodge et al. 2017

353

a priori exclusions & establishment screen

211

Sources:

USGS NAS, FishBase, USACE National Wetland Plant List, ISSG GISD, USFWS ERSS, etc.

Excluded:

- Viruses & Bacteria
- Reptiles, Amphibians, Mammals
- Widespread
- Marine
- Tropical
- FACU

353

Establishment?

211

Impact?

Source:

Great Lakes Aquatic Nonindigenous Species Risk Assessment (GLANSRA) framework

Davidson et al. 2017 "Development of a risk assessment framework to predict invasive species establishment for multiple taxonomic groups and vectors of introduction" Mgmt Biol Inv Vol 8

Environmental Impacts	Socioeconomic Impacts
Toxicity/facilitation of parasitism or viral/bacterial infections	Human health
Competition	Infrastructural damage
Trophic alteration	Degradation of water quality related to human use
Genetic effects	Harm to economic sectors
Degradation of water quality	Harm to recreational potential
Degradation of physical habitat	Diminishment of aesthetic quality

353

Establishment?

211

Impact?

141

Excluded:

- Low impact
- Unknown impact

Scoring			
Score	# U	Impact	
>5	Any	High	
2-5	Any	Moderate	
0	0-1	Low	
1	0	Low	
0	≥2	Unknown	
1	≥1	Unknown	

Establishment?

211

Impact?

141

Introduction?

Source:

GLANSRA framework (Davidson et al. 2017)

POTENTIAL INTRODUCTION VIA UNAUTHORIZED INTENTIONAL RELEASE

3a) Is this species sold at aquarium/pet/garden stores ("brick & mortar" or online), catalogs, biological supply companies, or live markets (e.g., purchased for human consumption, bait, ornamental, ethical, educational, or cultural reasons) and as a result may be released into the Great Lakes basin?

Yes, this species is available for purchase.	100
No, this species this species is rarely/never sold.	0
Unknown	U

3b) How easily is this species obtained within the Great Lakes region (states/provinces)?

This species is widely popular, frequently sold, and/or easily obtained within the Great Lakes region.	Score x 1
This species is widely popular, and although trade, sale, and/or possession of this species is prohibited, it is frequently sold on the black market within the Great Lakes region.	Score x 0.5
This species is not very popular or is not easily obtained within the Great Lakes region.	Score x 0.1
Unknown	U

Establishment?

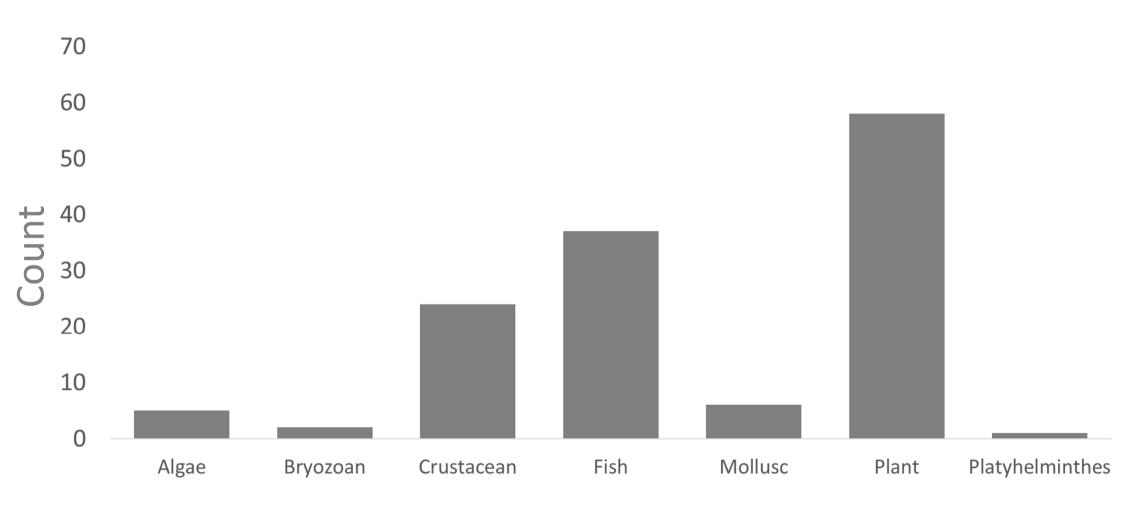
211

Impact?

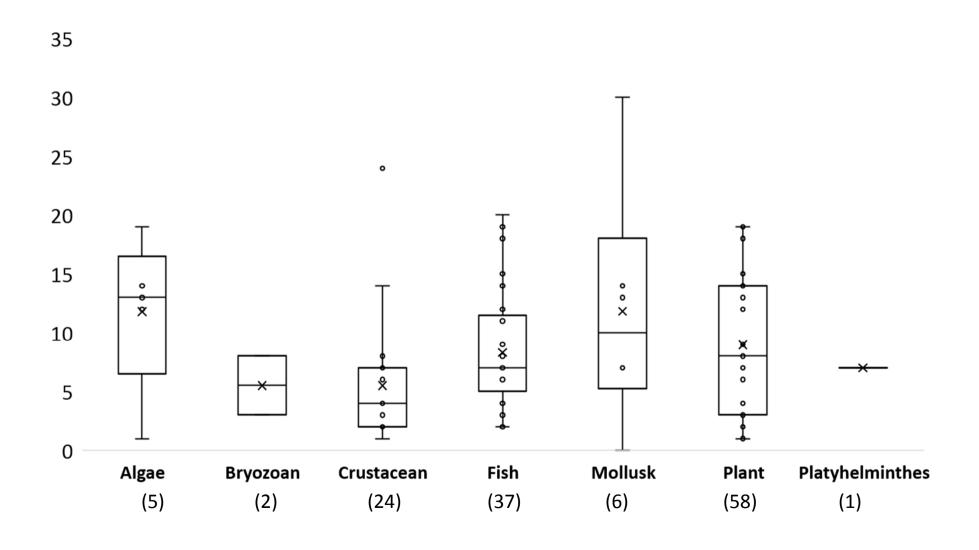
141

Introduction?

133

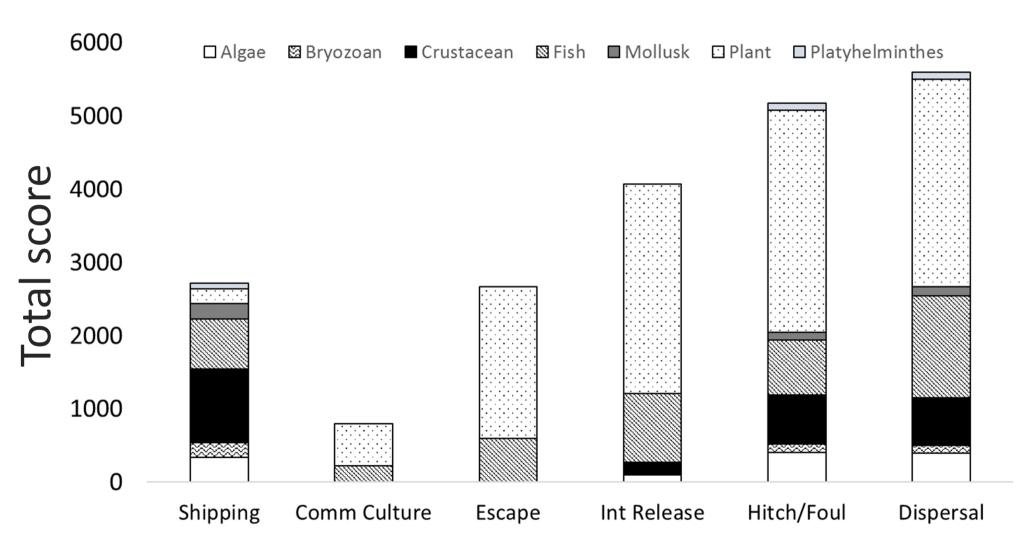

Excluded:

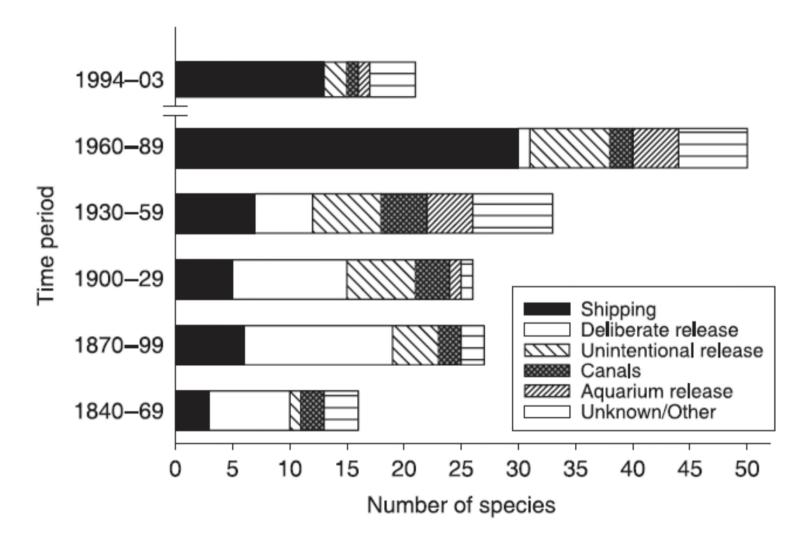
Low probability & High Confidence

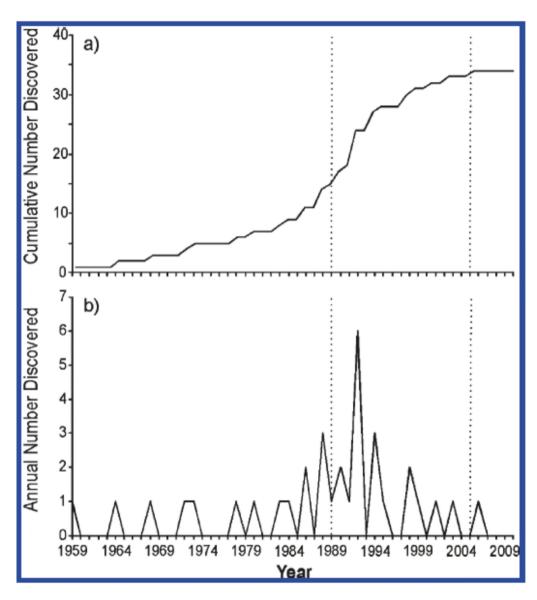

Scoring		
Points (per vector)	Probability for Introduction	
80-100	High	
40-79	Moderate	
0-39	Low	
# of Unknowns (overall)	Confidence Level	
0	High	
1-2	Moderate	
3-5	Low	
>5	Very low	

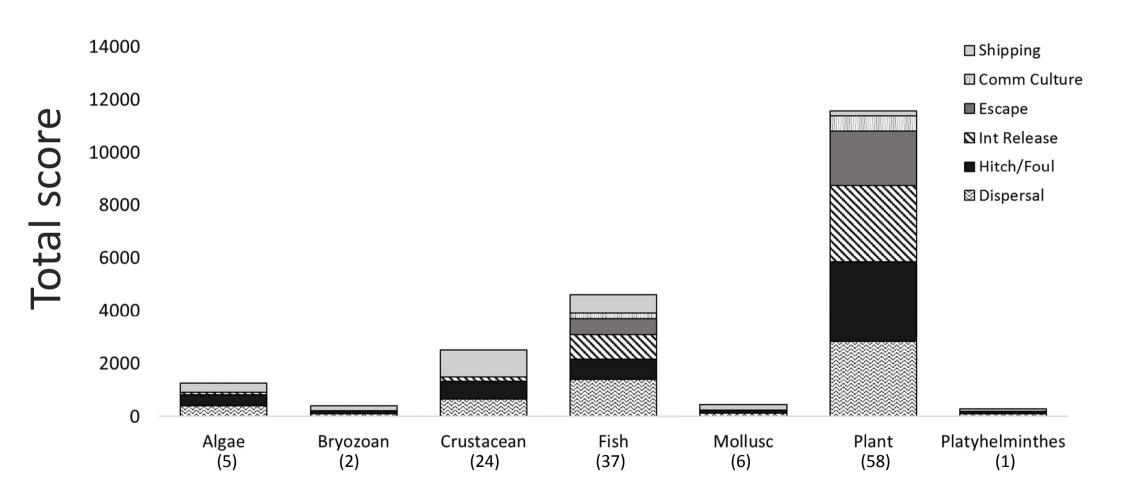
RESULTS

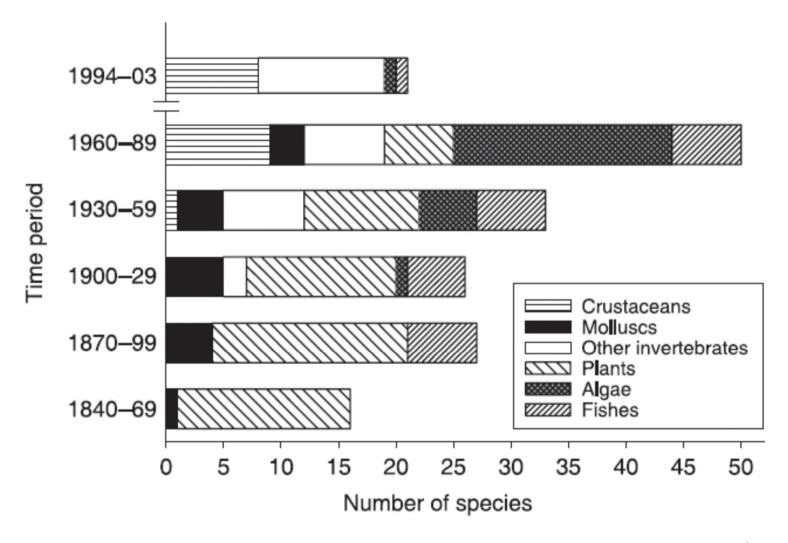
What species/taxa?


Environmental Impact Scores (max possible = 36)

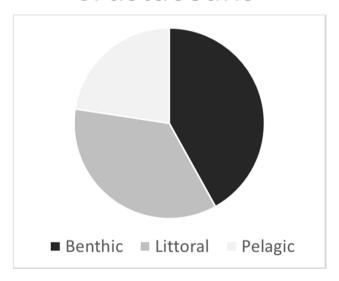



Socio-Economic Impact Scores (max possible = 36)

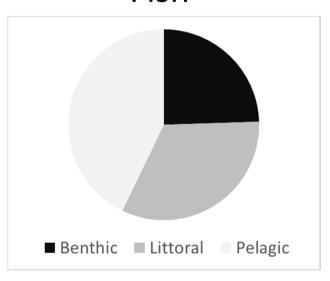

How will they arrive & spread?



Bailey et al. 2011. Environ Sci Technol 45


Ricciardi 2006. Div & Dist 12

Where will we find them?


Plants

Crustaceans

Fish

Aquatic Invasions (2009) Volume 4, Issue 4: 651-667 DOI 10.3391/ai.2009.4.4.10 © 2009 The Author(s) Journal compilation © 2009 REABIC (http://www.reabic.net) This is an Open Access article

Research article

Exploiting habitat and gear patterns for efficient detection of rare and non-native benthos and fish in Great Lakes coastal ecosystems

Anett S. Trebitz*, John R. Kelly, Joel C. Hoffman, Gregory S. Peterson and Corlis W. West

Sampling Design for Early Detection of Aquatic Invasive Species in Great Lakes Ports

Joel C. Hoffman

U.S. Environmental Protection Agency, Office of Research and Development, don Blvd., Duluth, MN 55804. E-mail: hoffman.joel@epa.gov

Joshua Schloesser

U.S. Fish and Wildlife Service, Ashland Fish and Wildlife Conservation Office,

Anett S. Trebitz, Greg S. Peterson, and Michelle Gutsch

U.S. Environmental Protection Agency, Office of Research and Development,

Henry Quinlan

U.S. Fish and Wildlife Service, Ashland Fish and Wildlife Conservation Office,

John R. Kelly

U.S. Environmental Protection Agency, Office of Research and Development,

Summary

- What species/taxa?
 - A preponderance of Plants
 - ...though algae and mollusks may pose the greatest risk on a per species basis
- What pathways?
 - The relative risk of non-shipping vectors as pathways of introduction will probably increase
- What habitats?
 - Habitat associations will likely vary by taxa, but key habitats for any group could be identified through quantitative approaches and adaptive sampling
- Continuous improvement and re-evaluation is needed

Acknowledgements

- GLRI grant from the U.S. Fish and Wildlife Service to the Michigan Department of Environmental Quality (Funding Opportunity F14AS00095)
- Core management team participants and active observers:
 - Kevin Irons and Vic Santucci (ILDNR)
 - Eric Fischer (INDNR),
 - Sarah LeSage (MDEQ) Project Manager
 - Nick Popoff (MIDNR)
 - Kelly Pennington and Heidi Wolf (MNDNR)
 - Catherine McGlynn, Leslie Surprenant, and Dave Adams (NYSDEC),
 - John Navarro (OHDNR),
 - James Grazio (PA DEP),
 - Robert Wakeman and Maureen Ferry (WIDNR)
 - Michael Hoff (USFWS Grant officer) and Sandra Keppner (USFWS)
 - Francine MacDonald and Tim Johnson (OMNR)
 - Isabelle Desjardins (MRVF) and Isabelle Simard (MDDEP)
- Technical advisory group
 - Anett Trebitz and Joel Hoffman (EPA)
 - Stephen Hensler, Tim Strakosh, Darin Simpkins, Robert Haltner and Ted Lewis (USFWS)
 - Jon Bossenbroek (University of Toledo)
 - Erika Jensen (Great Lakes Commission)