

Implementing DNA metabarcoding as costeffective tool to provide biological data for port baseline survey

Presented by: Anaïs Rey (Ph.D student)

Supervised by: Dr Naiara Rodríguez-Ezpeleta and Dr Oihane C. Basurko

Shipping carries about **90% of world trade**

- Shipping carries about **90% of world trade**
- 10 billon tones of ballast water are moved globally each year
- **7,000 species** are daily transferred around the world with ballast water

At source port

During voyage

At recipient port

https://www.nioz.nl/ballastwater-en

- Shipping carries about 90% of world trade
- 10 billon tones of ballast water are moved globally each year
- **7,000 species** are daily transferred around the world with ballast water
- Major vector of introduction of Non-Indigenous Species, pathogens and harmful algae

Economical impact

Zebra mussel (*Dreissena polymorpha*)

 Costs for management \$500 millions/year in Great Lakes

Environmental impact

Chinese crab (*Eriocheir sinensis*)

- o Food web altered
- Native biodiversity reduced
- Physical disturbances

Social impact

Cholera (*Vibrio cholera*)

Human disease

- Shipping carries about 90% of world trade
- 10 billon tones of ballast water are moved globally each year
- **7,000 species** are daily transferred around the world with ballast water
- Major vector of introduction of Non-Indigenous Species, pathogens and harmful algae
- To prevent further biological invasions, the Ballast Water Management Convention has been established and is currently into force

All ships in international travel must manage their ballast waters and sediments:

- Ballast Water Exchange in open sea
- Ballast Water Treatment Systems

Technology in accordance with existing law regulations (IMO D - 2 STANDARDS) simple inovative method of treatment of ballast water for any type of vessel

- Shipping carries about **90% of world trade**
- 10 billon tones of ballast water are moved globally each year
- **7,000 species** are daily transferred around the world with ballast water
- Major vector of introduction of Non-Indigenous Species, pathogens and harmful algae
- To prevent further biological invasions, the Ballast Water Management Convention has been established and is currently into force

All ships in international travel must manage their ballast waters and sediments:

- Ballast Water Exchange in open sea
- Ballast Water Treatment Systems

Ballast water monitoring needed:

Developing tools that will provide biological data to assess the compliance to the Ballast Water Management Convention

- Shipping carries about 90% of world trade
- 10 billon tones of ballast water are moved globally each year
- **7,000 species** are daily transferred around the world with ballast water
- Major vector of introduction of Non-Indigenous Species, pathogens and harmful algae
- To prevent further biological invasions, the Ballast Water Management Convention has been established and is currently into force

All ships in international travel must manage their ballast waters and sediments:

- Ballast Water Exchange in open sea
- Ballast Water Treatment Systems

Ballast water monitoring needed:

Developing tools that will provide biological data to assess the compliance to the Ballast Water Management Convention

Focus on DNA-based detection of species as a solution:

Assessing the usefulness of genetic tools for ballast water and ports monitoring

Contents lists available at ScienceDirect

Journal of Sea Research

journal homepage: www.elsevier.com/locate/seares

The challenges and promises of genetic approaches for ballast water management

Anaïs Rey*, Oihane C. Basurko, Naiara Rodríguez-Ezpeleta

Introduction: Port baseline surveys

Monitoring applications extracted from Guidelines

✓ Risk assessment for granting exemptions: port baseline survey & target species detection

Example:

Shipowner looking an exemption for the specific voyage Rotterdam (Netherland) and Le Havre (France)

Ask for an exemption

Scientific Risk

→ Is there a risk of harmful organisms introduction?

Biological data from ports are needed:

- **✓** Native species
- **✓ Non-Indigenous species**

Objectives

To ease complex and expensive port baseline surveys

By developing of a protocol based on the use of DNA metabarcoding

 The taxonomic assignment of individuals from an environmental sample based on their DNA sequences

Where specific objectives will be assessed:

- **Reliability of the DNA metabarcoding port baseline survey to:**
- Detect Non-Indigeneous Species
- Retrieve the biological communities of the port
- ***** The potential of using environmental DNA to retrieve similar communities
- **❖** The importance of seasonal sampling

Materials and methods: The port studied

→ Port of Bilbao, open on the Atlantic ocean (Bay of Biscay), Northern Spain, Europe

4 Sampling periods:

4 Sampling periods:

4 Sampling periods:

4 Sampling periods:

Target: benthic macrofaunal

• Zooplankton nets

Target: small & large zooplankton

• Scrapping surfaces & PVC plates:

Target: fouling organisms

2 Sampling periods: Winter to Spring 2017, Spring to Summer 2017

Sediment

Target: benthic macrofaunal

Zooplankton nets

Target: small & large zooplankton

Scrapping surfaces & PVC plates:

Target: fouling organisms

Water:

Target: Phytoplankton

Target: Macroorganisms through eDNA

In total, 160 samples were processed

From filtered water:

To retrieve macroorganisms

In total, 160 samples were processed

- In total, 160 samples were processed
- From filtered water
- **From sediment, PVC plates and plankton nets** → Similarly processed

To retrieve benthic macrofaunal

- In total, 160 samples were processed
- From filtered water
- **From sediment, PVC plates and plankton nets** → Similarly processed

To retrieve benthic macrofaunal

Total OTU α -Diversity : 104

• **Autumn period**: 88 (84%)

• Winter period : 78 (75%)

Shared OTU between2 periods: 62 (60%)

OTU identified to:

• Species level \rightarrow 73 (70 %)

Non-Indigenous Species detected in the benthic macrofauna communities:

Non-Indigenous Species detected in the benthic macrofauna communities:

Black-pygmy mussel (Xenostrobus securis)

Manila clam (Ruditapes philippinarum)

- First report 2005
- Native from Pacific coast of Asia
- Introduced with aquaculture in Europe

Non-Indigenous Species detected in the benthic macrofauna communities:

Black-pygmy mussel (*Xenostrobus securis*)

Manila clam (Ruditapes philippinarum)

Amphipoda (Grandidierella japónica)

- FIRST RECORD in Northern Spain
- Native from Japan
- Likely maritime transport

Non-benthic macrofauna Non-Indigenous species recovered with the sampling:

Non-benthic macrofauna Non-Indigenous species recovered with the sampling:

Non-benthic macrofauna Non-Indigenous species recovered with the sampling:

DISCUSSION & CONCLUSION:

What have we learned so far?

- First results suggest DNA metabarcoding as cost-effective tool to provide biological data for port baseline survey
- Good species level recovery in general
- Seasonal sampling is needed
- Some samples are dominated by one phylum → Representativity?

DISCUSSION & CONCLUSION:

What have we learned so far?

- First results suggest DNA metabarcoding as cost-effective tool to provide biological data for port baseline survey
- Good species level recovery in general
- Seasonal sampling is needed
- Some samples are dominated by one phylum \rightarrow Representativity?

What is next?

- Comparison of the DNA metabarcoding port baseline survey with previous monitoring surveys and Non Indigenous Species databases
- Assessment of environmental DNA (from water and sediment) to retrieve the community of the biodiversity components
 - Cost and time analysis
- Propose the next steps to optimize:
- Barcoding of Non-Indigenous Species?
- Further benchmarking of metabarcoding protocols to minimize overlooking taxa?

Thank you for your attention!

Questions?

Anaïs Rey: arey@azti.es

Dr Naiara Rodríguez-Ezpeleta: nrodriguez@azti.es

Dr Oihane C. Basurko: ocabezas@azti.es

http://www.aquainvad-ed.com/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 642197.

Introduction: Making the link between ballast water monitoring & genetic tools

Methodology: Review of the literature, guidelines and regulations of the BWM Convention

Contents lists available at ScienceDirect

Journal of Sea Research

journal homepage: www.elsevier.com/locate/seares

The challenges and promises of genetic approaches for ballast water management

Anaïs Rey*, Oihane C. Basurko, Naiara Rodríguez-Ezpeleta

AZTI, Marine Research Division, Sukarrieta, Txatxarramendi ugartea z/g, 48395 Sukarrieta, Bizkaia, Spain

Overview

• 36 studies in ballast water and ports which targeted:

Pathogens, Bacteria, Protists Zooplankton, Phytoplankton Invertebrates in sediment

Approaches:

Targeted species and biodiversity assessment surveillance

Monitoring applications extracted from Guidelines

- Test the efficacy of ballast water management
- Assess the alive biodiversity discharged via ballast water
- Risk assessment for granting exemptions: port baseline survey & target species detection

Future investments before possible implementation

- Standardization
- Increasing portability of genetic tools
- Improvement of reference databases
- Exploring alternative sampling strategies (environmental DNA)