WHAT REALLY SCARES ZEBRA MUSSELS?

A few words about the impact of biotic factors on valve movement reactions of the zebra mussel *Dreissena polymorpha*

Anna Dzierżyńska-Białończyk

Jarosław Kobak,

Łukasz Jermacz

Nicolaus Copernicus University

in Toruń, Poland

ZEBRA MUSSEL DREISSENA POLYMORPHA

- Invasive species from the Ponto-Caspian region
- Used in early warning systems based on mussel valve gaping

Ecotoxicology 6, 153-165 (1997)

Valve movement response of the mussel Dreissena polymorpha – the influence of pH and turbidity on the acute toxicity of pentachlorophenol under laboratory and field conditions

JOST BORCHERDING* and BRIGITTE JANTZ

Zoological Institute of the University of Cologne, Physiological Ecology, D-50923 Köln, Germany

Wat. Res. Vol. 31, No. 12, pp. 3187–3190, 1997 © 1997 Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S0043-1354(97)00163-2 0043-1354(97)17.00 + 0.00

TECHNICAL NOTE

SHELL VALVE MOVEMENT RESPONSE OF DARK FALSE MUSSEL, MYTILOPSIS LEUCOPHAETA, TO CHLORINATION

SANJEEVI RAJAGOPAL'*, GERARD VAN DER VELDE and HENK A. JENNER

Arch. Environ. Contam. Toxicol. 40, 497–504 (2001) DOI: 10.1007/s002440010202

Environmental
Contamination
and Toxicology
0 2001 Springer-Verlag New York Inc.

The Influence of Suspended Particles on the Acute Toxicity of 2-Chloro-4-Nitro-Aniline, Cadmium, and Pentachlorophenol on the Valve Movement Response of the Zebra Mussel (*Dreissena polymorpha*)

J. Borcherding, J. Wolf*

Zoological Institute of the University of Cologne, Department of General Ecology and Limnology, Ecological Field Station Grietherbusch, D-50923 Köln, Germany

Received: 4 July 2000/Accepted: 14 November 2000

Valve movement responses of *Velesunio angasi* (Bivalvia: Hyriidae) to manganese and uranium: An exception to the free ion activity model

Scott J. Markich a,b,*, Paul L. Brown a, Ross A. Jeffree a, Richard P. Lim b

ER Aquatic Toxicology 66 (2004) 333–343

v elsevier com/locate/aguator

Copper detection in the Asiatic clam *Corbicula fluminea*: optimum valve closure response

Damien Tran a,b,*, Elodie Fournier a,b, Gilles Durrieub, Jean-Charles Massabuaub

THE AIM OF OUR STUDY

- To check valve responses of zebra mussels to biotic factors
- 6 variants with chemical cues:

THE AIM OF OUR STUDY

- To check valve responses of zebra mussels to biotic factors
- 2 variants with the physical presence of:

METHODS

- Experiments under laboratory conditions
- Recorded by video cameras
- Tested individuals:
 - one per treatment
 - specially marked

- Duration: 2 hours
- ❖ Noldus Ethovision XT
 - the software for analysing recorded video files
- Checked parameters:
- mean opening (%)
 - total duration of particular valve gaping levels
 - number of valve opening events

RESULTS – MEAN OPENING [%]

Alarm substance = lower mean opening

1h: χ^2 =8.4, df=5, P=0.135

2h: χ^2 =21.9, df=5, P=0.001

RESULTS – DURATION OF PARTICULAR GAPING LEVELS

(% OF TOTAL TIME)

Kruskal-Wallis test:

1h: χ^2 =37.7, df=5, P<0.001

2h: χ^2 =22.0, df=5, P<0.001

Kruskal-Wallis test:

1h: χ^2 =10.1, df=5, P=0.071

2h: χ^2 =21.9, df=5, P=0.006

RESULTS – DURATION OF PARTICULAR GAPING LEVELS

(% OF TOTAL TIME)

Kruskal-Wallis test:

1h: χ^2 =8.6, df=5, P=0.127

2h: χ^2 =9.4, df=5, P=0.095

Kruskal-Wallis test:

1h: χ^2 =11.3, df=5, P=0.045

2h: χ^2 =19.4, df=5, P=0.002

RESULTS – NUMBER OF THE VALVE OPENING EVENTS < 20% OF THE MAXIMUM OF VALVE GAPING

Kruskal-Wallis test:

1h: χ^2 =12.1, df=5, P=0.034

2h: χ^2 =18.4, df=5, P=0.002

Alarm substance = more narrow valve openings

RESULTS – IMPACT OF D. VILLOSUS

DURATION OF PARTICULAR GAPING LEVELS

MEAN OPENING [%]

(% OF TOTAL TIME)

D. villosus = smaller mean opening, longer time spent in small gaping, shorter time spent in large gaping

G – presence of D. *villosus* C - control

CONCLUSIONS

- ❖ Zebra mussels exhibited a clear response to the conspecific alarm substance:
 - -narrower mean opening during the entire experiment
 - -shorter time spent with valves gaping >=80% of the maximum opening and longer time spent with valves gaping >0<20%.
- Tested mussels did not clearly respond to the scent of the roach. We suppose that roach kairomones may:
 - stimulate specific responses to the alarm substance (e.g. number of opening events)
 - "mask" alarm substance what can be beneficial for the predator.
- The physical presence of Dikerogammarus villosus is a strong stress factor for the zebra mussel (mussels spent more than 50% of time with closed valves).

