Experimental assessment of emerging invasion threat:

A host-parasite coevolutionary association modulating invasional meltdown

Martin Reichard,

Romain Rouchet & Carl Smith

Institute of Vertebrate Biology, Czech Academy of Sciences, Czech Republic (Europe)

Invasive species may alter entire ecosystems ...

... but their impact is typically much subtler

Coevolutionary relationships: arms races

- <u>Different equlibria</u> different species/populations at different coevolutionary states
- Species translocations
 affects such equilibria, with contrasting impacts (positive or negative)

The role of <u>coevolution</u> in success of biological invasions

... and their impact on native species

Outline

- 1. Model system (bitterling fish and host mussels in Europe)
- 2. Invasion of **Asian mussel** perturbed the roles in the association
- 3. Expected arrival of **Asian bitterling** species
- 4. Experiments to predict its effect
 - 1. Competition for resources (mussels)
 - 2. Role of co-invasion (invasional meltdown)
 - 3. Potential for hybridization
 - 4. Overwinter survival

European bitterling, Rhodeus amarus

single bitterling in Europe, 60+ spp in Asia

Unionid life cycle

glochidia feed on fish, metamorphose, and drop off the fish, but may be rejected

- eggs develop into glochidia

- glochidia released when ripe
- glochidia must attach fish fin or gill

Mussel eggs fertilized internally inside female gills

Livingston © BIODIDAC

<u> Graffoologyeerineaduratinaeesaulamanirkadurationokuseomy</u>

Rhodeus amarus parasitize unionids in Europe

- 1. hosting *R. amarus* embryos is costly for mussels
- 2. avoid infection by glochidia of European unionids

compete for oxygen, disrupt water flow, damage epithelium

Anodonta woodiana

- East Asian origin, sympatric with many bitterling species
- established in Europe since 1970s
- worldwide invasion in progress

Translocation across coevolutionary mosaic

From high bitterling density and diversity

... and hence strong selection to avoid bitterling parasitism

Consequences of *A. woodiana* invasion for *R. amarus*

- European R. amarus unable to exploit A. woodiana
- R. amarus is parasitized by A. woodiana glochidia

Host-parasite role reversal

Reichard, M. et al. (2012). An invasive species reverses the roles in a host-parasite relationship between bitterling fish and unionid mussels. *Biology Letters*, 8, 601-604.

Reichard, M. et al. (2015). Population-specific responses to an invasive species. *Proceedings Royal Society B*, 282: 20151063.

Asian Rhodeus ocellatus

Predicting invasion potential of *R. ocellatus*

- Now available in pet shops in Europe
- Invasive elsewhere (Japan, middle Asia, Oceania)
- Able to live in similar climatic conditions to *R. amarus* (?)
- Parasitizing a wide range of unionids including A. woodiana

R. ocellatus host musel use:

Reichard et al. 2007. Evol. Ecol. Research

1. Competition for host mussels

Male aggression

Male European *R. amarus* more aggressive:

displace Asian *R. ocellatus* from monopolizing mussel hosts.

Competition for host mussels

Female oviposition

But Asian *R. ocellatus* can use Asian *A. woodiana* ... while European *R. amarus* not

2. Demographic experiment

Two mussel treatments:

4x native mussels

2x native mussels 2x *A. woodiana*

Three fish treatments:

R. amarus

4 pairs

R. ocellatus

4 pairs

Mixed: R. amarus + R. ocellatus

2 pairs + 2 pairs

Garden experiment: March – October (42 tubs)

- daily count of juveniles emerging from mussels

Reproductive success: controls

Reproductive success:

competition

3. Hybridization?

Native mussels Native + woodiana

Relatively low level ...but present.

4. Overwinter survival

Very good overwinter survival.

Conclusions

- Native bitterling species superior in securing breeding resources
- 2. Non-native bitterling species benefits from invasion of its co-evolved partner
- 3. Potential for hybridization
- Good overwinter survival

The fate of potential invasion by *R. ocellatus* depends on the establishment success of its co-evolved host, *A. woodiana*

Thank you for your attention!

Ackowledgements

Radim Blažek
Josef Bryja
Caroline Methling
Markéta Ondračková
Matej Polačik
Radim Blažek
Radomil Řežucha
Milan Vrtílek

Financial support

Leverhulme Trust
Czech Science Foundation
Czech Academy of Sciences

www.reichardlab.eu

