Experimental selection of a Ponto-Caspian gammarid

Nora-Charlotte Pauli, Filipa Paiva, Elizabeta Briski

The Ponto-Caspian region I

Black-, Caspian- & Azov Sea

- History of changing sealevel and salinity
 - Selection for euryhalinity
- Inherent predisposition for invasion success?
- Ancestry?
 - Freshwater vs. marine

The Ponto-Caspian region II

Major donor area for

- Baltic Sea
- Great Lakes
- St Lawrence River

Baltic Sea

- > 65% of P-C. NIS in salinities <10 PSU
- Freshwater origin?

Casties et al. 2016, Ecol. Evol.

A Ponto-Caspian advantage?

 Shipping is main vector for aquatic species dispersal

- Many oligonaline and freshwater ports
- → Advantage for P.-C. species?

Kaluza et al. 2010, J. R. Soc. Interface

Objectives

- I. Is it *possible to select P. maeoticus* to lower and higher salinities?
 - i. Is it *easier* to select *P. maeoticus* for *low salinities*?
- II. How does *fitness* compare between differently selected populations?
- III. Does heritability differ among selected populations?

Study organism

Crustacea
Amphipoda

Pontogammarus maeoticus

Jafrud, Iran, Caspian Sea 10 PSU, 18°C

Experimental design

Procedure - Juveniles

- Separation of hatched juveniles
 - Reared at hatching salinity

2. Water exchange + / - 2 PSU

https://thenounproject.com, https://en.wikipedia.org/wiki/File:Beaker.svg

Fitness parameters

I. Survival

- Adults
- Juveniles

II. Juvenile growth

Cephalon length, proxy for total length

III. Hatching success

Adult survival

Low salinity stress

 Highest survival in low selected population

Adult survival

High salinity stress

- No survival above 34 PSU
- in all selection levels

Juvenile survival

Hatching success:

- 0 33 ind./cohort
- 0 23 PSU

Effect of low salinity stress

p = 0.03 Highest survival

Juvenile survival in selected populations

Juvenile growth

Effect of high salinity stress p = 0.02Slow growth, low survival

Control selection (10 PSU)

 Highest fitness at control salinity

p < 0.001

Juvenile growth in selected populations

Conclusion – Selection for high salinity

No successful reproduction > 23
 PSU

- High mortality > 20 PSU,
- No survival above 34 PSU

- > Low fitness
- Selection not successful
 - > more generations needed

Conclusion – Selection for low salinity

High fittness

Low selection peformed as good as control or better

- Successful reproduction in freshwater
- → Freshwater ancestry?

Freshwater ancestry

- Possible advantage e.g. over Baltic species
 - Also euryhaline, but less tolerant to freshwater

- Explanation for successful invasion of freshwater habitats
- Heritability work in progress

Thank you for your attention!

Special thanks to:

Leila Kittu, Sonia Moron, Ina Stoltenberg, Mildred Johnson, Matthias Schneider, Mark Lenz, Gregor Steffen

Juvenile growth

GEOMA

High selection (16 PSU)

 No difference between low salinity stress and control

Adult survival I

Effect of selection*s. stress p < 0.001

Low salinity stress

 Highest survival in low selected population

