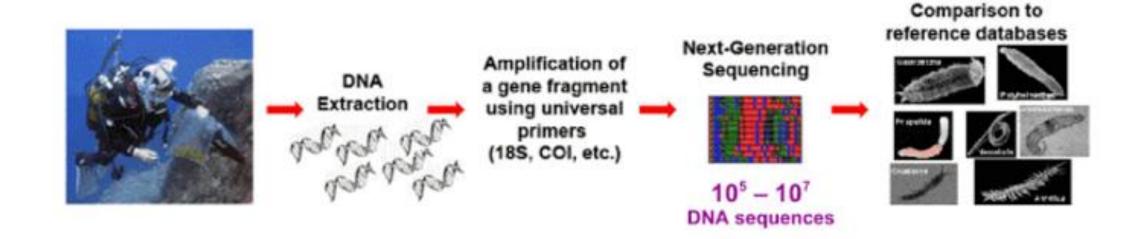


Biodiversity entering US ports via ballast water discharge An analysis using High Throughput Sequencing

John Darling, John Martinson, Yunguo Gong, Sara Okum, Erik Pilgrim US Environmental Protection Agency

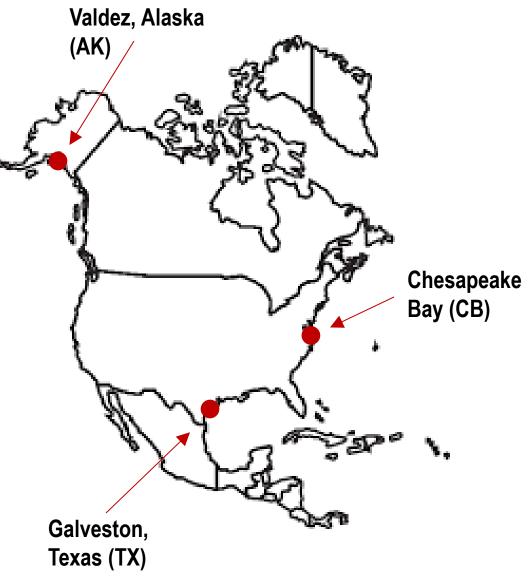
Katrina Lohan and Greg Ruiz Smithsonian Environmental Research Center

> Yuping Zhang University of Michigan



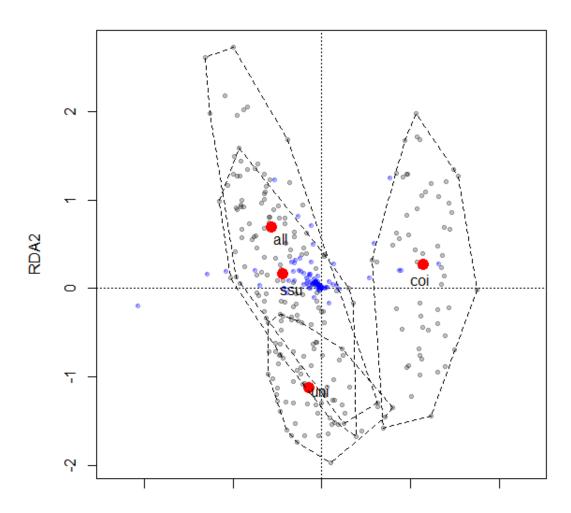
The Questions

- What can DNA tell us about the biodiversity being delivered to US ports in ballast?
- Can DNA data capture biogeographic signatures (e.g. can we identify sources)?
- How much does management effect biodiversity in ballast?
- What species are being delivered, and are any of them troubling?


DNA Meta-barcoding

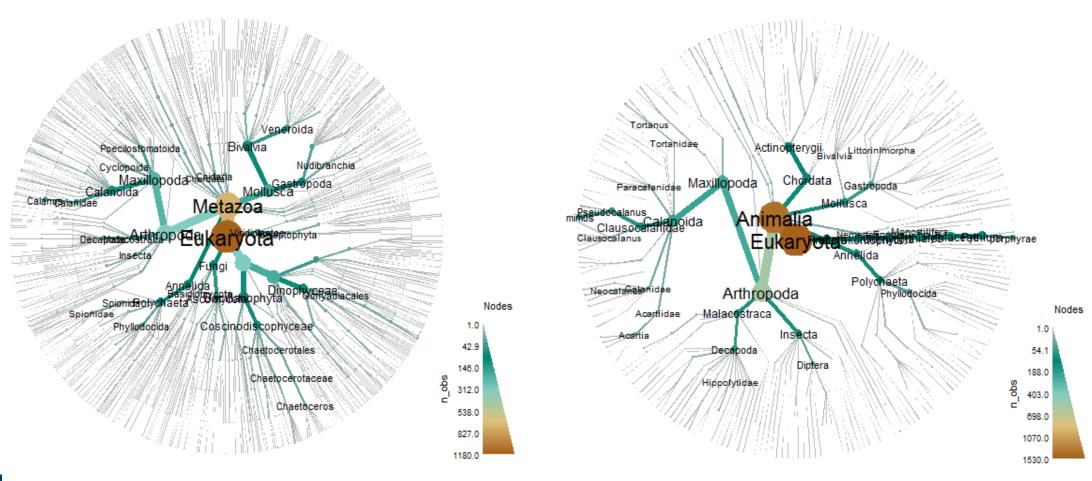
The Samples

- Chesapeake: 51 samples sourced from 32 ports in 12 countries, mostly Europe and North America
- Texas: 45 samples from 32 ports in 16 countries, mostly North and South America
- Alaska: 47 samples from 14 ports, all in the US
- Sequence generated from 3 18S loci and COI



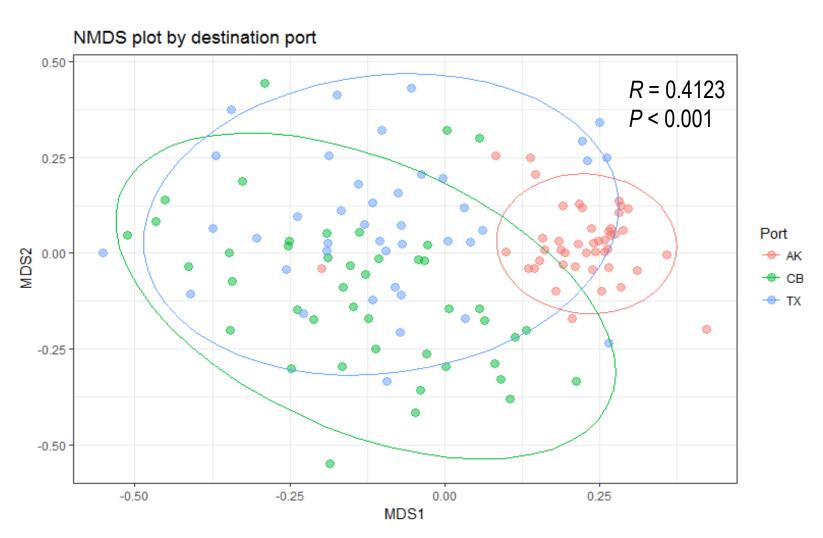
How much diversity can we see? Which loci work best?

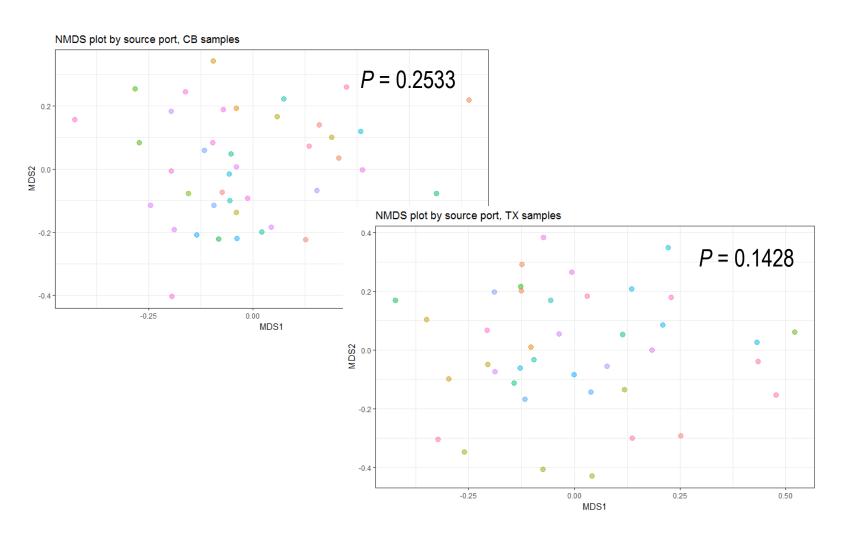
EXAMINING THE METHOD


Effect of primer on community structure

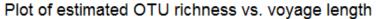
Effect of primer on community structure

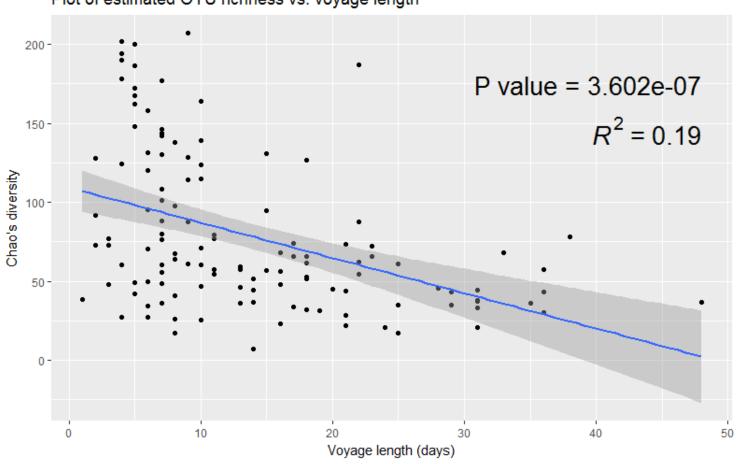
SSFU (18S) COI

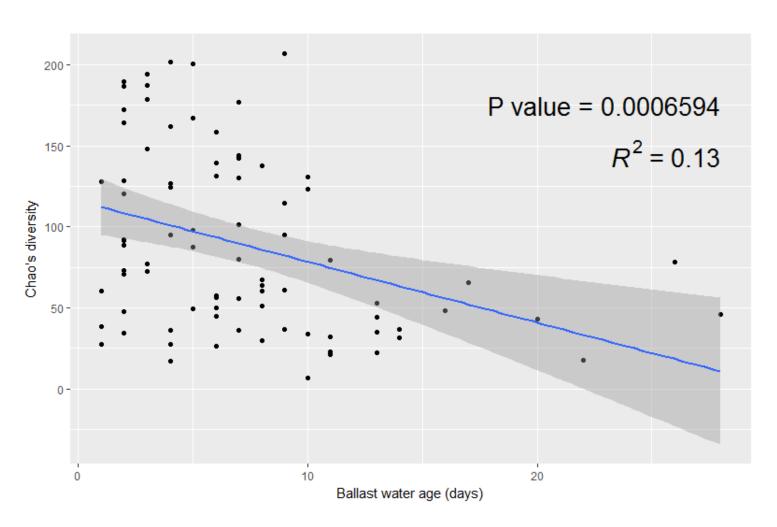


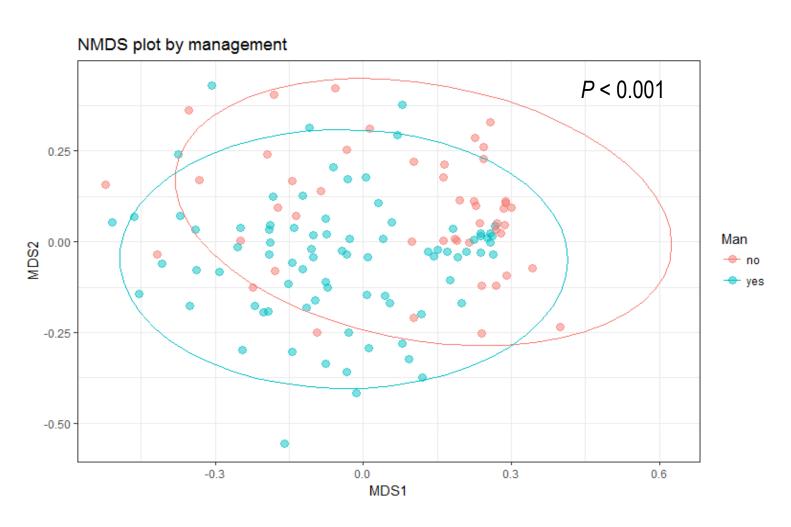

What are the drivers of differences in ballast water communities?

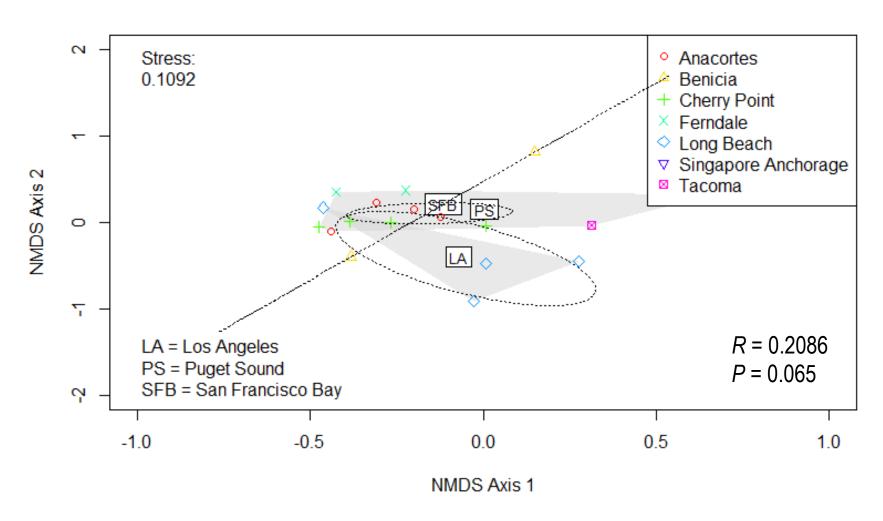
COMPARING DIVERSITY ACROSS SAMPLES



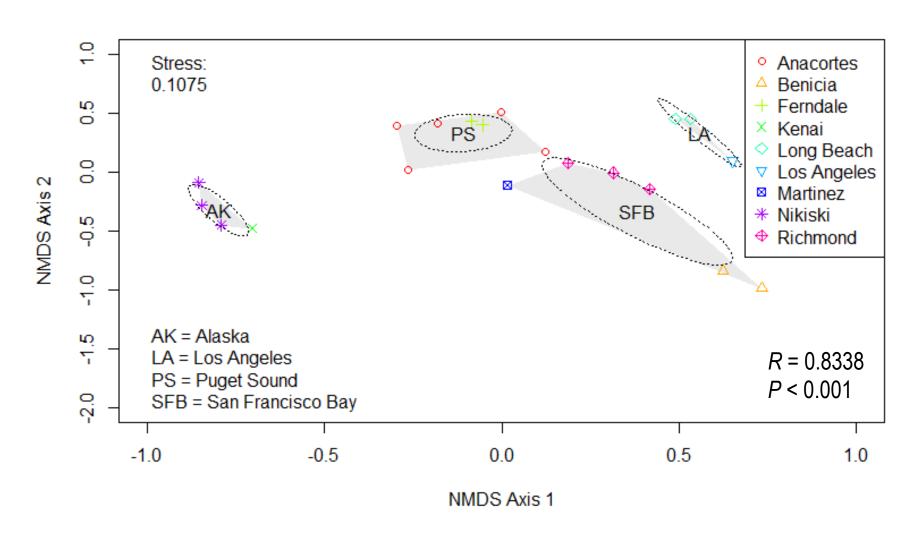






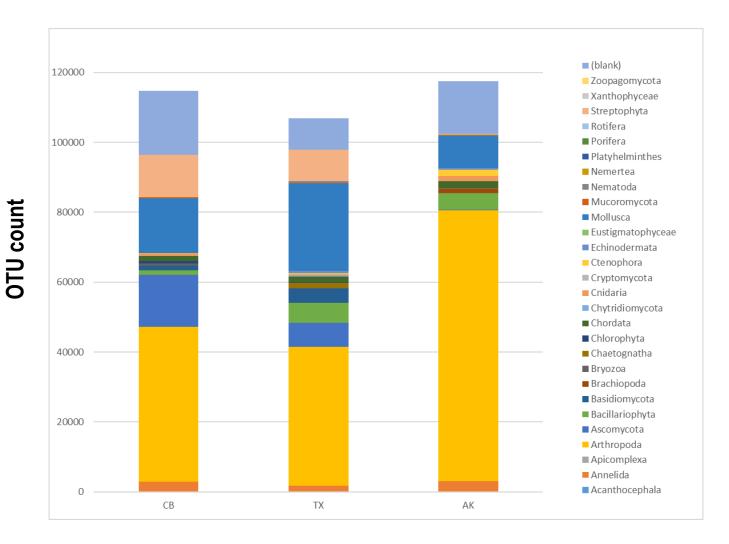


Effect of management on community structure



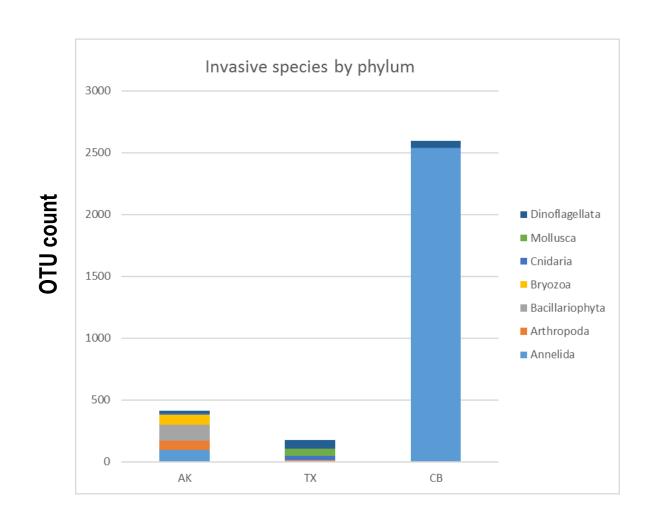
Effect of management on community structure

Effect of management on community structure

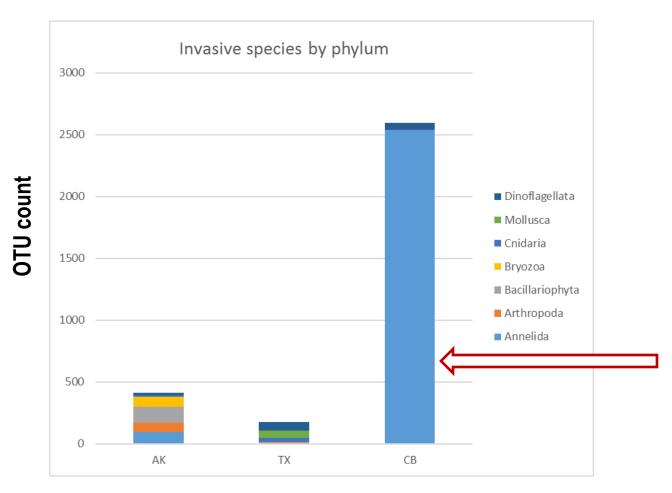


What's in the samples? How diverse are they? Are there any invasives?

DESCRIBING DIVERSITY



Total biodiversity (by Phylum)



Non-native biodiversity

Non-native biodiversity

Alitta succinea

Non-native biodiversity

PHYLUM	SPECIES	All18S	SSFU	Uni18S	COI	PHYLUM	SPECIES	All18S	SSFU	Uni18S	co
Annelida	Alitta succinea	х		х		Cnidaria	Diadumene leucolena		х		
Annelida	Hediste diversicolor				х	Cnidaria	Mnemiopsis leidyi		Х		
Annelida	Myrianida pentadentata			х	х	Cnidaria	Obelia dichotoma	х		х	
Annelida	Polydora cornuta	х				Cnidaria	Obelia geniculata			х	
Annelida	Pseudopolydora paucibranchiata	х	Х	х		Cnidaria	Obelia longissima			х	
Annelida	Streblospio benedicti	х				Dinoflagellata	Alexandrium andersonii		Х		
Arthropoda	Acartia longiremis				х	Dinoflagellata	Alexandrium monilatum	x			
Arthropoda	Acartia tonsa	х	Х	х	х	Dinoflagellata	Alexandrium ostenfeldii	х			
Arthropoda	Callinectes bocourti				х	Dinoflagellata	Alexandrium tamarense	x			
Arthropoda	Eurytemora pacifica	х	х			Dinoflagellata	Alexandrium taylori			x	
Arthropoda	Limnoithona tetraspina	х				Dinoflagellata	Ceratoperidinium falcatum		Х		
Arthropoda	Megabalanus rosa				х	Dinoflagellata	Dinophysis caudata		Х		
Arthropoda	Monocorophium insidiosum				х	Dinoflagellata	Gymnodinium aureolum	x			
Arthropoda	Oithona davisae	х	Х	х	х	Dinoflagellata	Gymnodinium catenatum		Х		
Arthropoda	Rhithropanopeus harrisii				х	Dinoflagellata	Karlodinium veneficum	х	Х	х	
Bacillariophyta	Coscinodiscus wailesii		Х			Dinoflagellata	Levanderina fissa		Х	х	
Bacillariophyta	Ditylum brightwellii	х	Х			Dinoflagellata	Phalacroma mitra		х		
Bacillariophyta	Heterosigma akashiwo		Х			Entoprocta	Anguinella palmata		Х		
Bacillariophyta	Mediopyxis helysia	х				Entoprocta	Barentsia benedeni	x			
Bacillariophyta	Rhizosolenia setigera		х			Mollusca	Balanus glandula				
Bacillariophyta	Thalassiosira hendeyi	х		х		Mollusca	Chama macerophylla	x			
Byozoa	Conopeum seurati	х				Mollusca	Corambe obscura	х			
Byozoa	Membranipora membranacea		Х	X	х	Mollusca	Crassostrea virginica		Х		
Byozoa	Styela clava			х		Mollusca	Crepidula onyx				
Chlorophyta	Aegagropila linnaei		Х			Mollusca	Martesia striata	х	х		
Chlorophyta	Pterosperma cristatum	х				Mollusca	Mya arenaria				2
Ciliophora	Uronema marinum	х				Mollusca	Mytella charruana		х		
Cnidaria	Blackfordia virginica	x				Mollusca	Mytilopsis leucophaeata	x			
Cnidaria	Coryne eximia			х		Mollusca	Spurwinkia salsa				2

Non-native biodiversity *Martesia striata*

Sequences producing significant alignments:

Select: All None Selected:0

Alignments Download GenBank Graphics Distance tree of results										
	Description	Max score	Total score	Query cover	E value	Ident				
	Martesia striata voucher BivAToL-250 cytochrome c oxidase subunit I (COI) gene, partial cds; mit	414	414	99%	4e-112	100%				
	Martesia striata isolate MTHS-37 cytochrome oxidase subunit I (COI) gene, partial cds; mitochon	335	335	97%	3e-88	94%				
	Martesia striata cytochrome c oxidase subunit I (COI) gene, partial cds; mitochondrial	333	333	100%	1e-87	93%				
	Martesia striata isolate MTHS-35 cytochrome oxidase subunit I (COI) gene, partial cds; mitochon	329	329	97%	2e-86	94%				
	Selenops bifurcatus isolate 893ESSVic cytochrome c oxidase subunit I (COI) gene, partial cds; m	117	117	58%	1e-22	83%				
	Selenops bifurcatus isolate 882SSNMNH cytochrome c oxidase subunit I (COI) gene, partial cds;	117	117	58%	1e-22	83%				
	Turbo cidaris mitochondrial partial COI gene for cytochrome oxidase I, isolate TCID.RUF.1	115	115	80%	5e-22	78%				
	Echinolittorina radiata haplotype Dm04 cytochrome oxidase subunit I (COI) gene, partial cds; mit	111	111	64%	6e-21	81%				
	Selenops bifurcatus isolate 967NicJic cytochrome c oxidase subunit I (COI) gene, partial cds; mit	111	111	58%	6e-21	82%				
	Selenops bifurcatus isolate 964NicJic cytochrome c oxidase subunit I (COI) qene, partial cds; mit	111	111	58%	6e-21	82%				

Non-native biodiversity Hediste diversicolor

Sequences producing significant alignments:

Select: All None Selected:0

Alignments Download GenBank Graphics Distance tree of results										
	Description	Max score	Total score	Query cover	E value	Ident				
	Hediste diversicolor voucher WCH 0118 cytochrome oxidase subunit 1 (COI) gene, partial cds; m	405	405	100%	3e-109	99%				
	Alitta succinea voucher SERCINVERT0102 cytochrome oxidase subunit 1 (COI) gene, partial cds	394	394	100%	6e-106	98%				
	Alitta succinea voucher SERCINVERT0507 cytochrome oxidase subunit 1 (COI) gene, partial cds	388	388	100%	3e-104	98%				
	Alitta succinea voucher SERCINVERT0101 cytochrome oxidase subunit 1 (COI) gene, partial cds	383	383	100%	1e-102	97%				
	Hediste diversicolor voucher WCH 0266 cytochrome oxidase subunit 1 (COI) gene, partial cds; m	383	383	100%	1e-102	97%				
	Alitta succinea voucher SERCINVERT0504 cytochrome oxidase subunit 1 (COI) gene, partial cds	375	375	99%	2e-100	97%				
	Alitta succinea voucher SERCINVERT0505 cytochrome oxidase subunit 1 (COI) gene, partial cds	372	372	100%	3e-99	96%				
	Alitta succinea voucher SERCINVERT0506 cytochrome oxidase subunit 1 (COI) gene, partial cds	372	372	100%	3e-99	96%				
	Alitta succinea voucher SERCINVERT0508 cytochrome oxidase subunit 1 (COI) gene, partial cds	372	372	100%	3e-99	96%				
	Alitta succinea isolate DNAS-4E-32786 cytochrome c oxidase subunit I (COI) gene, partial cds; m	315	315	80%	4e-82	98%				

Non-native biodiversity Hediste diversicolor

Query: OTU853

Top Hit: Annelida Polychaeta - Phyllodocida - *Alitta succinea* (100%)

Search Result:

A species level match could not be made, the queried specimen is likely to be one of the following:

Alitta succinea

Alitta limbata

Alitta saltoni

Hediste diversicolor

Alitta sp. 2

For a hierarchical placement - a neighbor-joining tree is provided:

TREE BASED IDENTIFICATION

Challenges for identifying invasive species

- How should we interpret differences between loci?
- Importance of assessing accuracy of taxonomic assignment
- Which reference lists should be used?
- Should there be a sequence abundance threshold?

Potential Applications of HTS

- Understanding patterns of biotic connectivity
- Investigating the variables that determine the rate of biodiversity accumulation in recipient ports
- Assessing the effects of ballast water management practices (exchange or treatment)
- Early detection to prioritize future surveillance efforts?

