# Mapping watershed degree of invasion across the 

 continental U.S.Amy J.S. Davis ${ }^{1}$, Ph.D, \& John A. Darling², Ph.D ${ }^{1}$ ORISE Postdoctoral Fellow, ${ }^{2}$ Senior Research Biologist U.S. Environmental Protection Agency

## THE GLOBAL TRANSPORTATION SYSTEM

## Macroscale Approach

1. Invasions are the results of global processes, but studies often focus on one/few species or local scales

- Limits our ability to make inferences due to differences in heterogeneity, climate, propagule pressure between study regions

2. Macroscale studies have the potential to identify robust unandirivers across taxa, geographies, and scales
GLOBAL ROADS
SHIPPINE RQUTES

## Objective

Map freshwater aquatic exotic species richness of watersheds across the contiguous U.S.

## Methods:

## A. Database Development

1. Obtained freshwater aquatic exotic species occurrence data from the following sources :

- USGS BISON
- USGS NAS
- EddMaps (Early Detection and Distribution Mapping System)

2. Cleaned data in R : removed centroids and duplicate occurrence records; extracted relevant attributes
3. Georeferenced point data by HUC unit in ArcGIS
4. Integrated data using MySQL

## Can now quickly summarize exotic richness by HUC watershed boundary

## Exotic Aquatic Plants Database

- All exotic plants listed in USDA Plants inhabiting aquatic freshwater habitats ( $\mathrm{n}=67$ )
- total of 245,507 records


## Exotic Aquatic Animals Database

- All exotic freshwater aquatic animal species listed by USGS NAS ( $\mathrm{n}=287$ )
- total of 156,269 records


Connecticut River Watershed Image adapted from: http://nh.water.usgs.gov/project/ct_atlas/water_wsheds_huc.htm

## HUC 8 Exotic Animal Richness



## HUC 8 Exotic Aquatic Plant Richness



## HUC 8 Total Exotic Aquatic Richness

Total Exotic Richness

| $\square$ | $0-1$ |
| :--- | :--- |
| $\square$ | $2-9$ |
| $\square$ | $10-16$ |
| $\square$ | $17-24$ |
| $\square$ | $25-37$ |
| $\square$ | $38-98$ |

## Animal Exotic Richness Hot Spots



## Plant Exotic Richness Hot Spots



Hot Spot-95\% Confidence
Hot Spot-99\% Confidence

## Objective

Determine if freshwater fishing demand is a better predictor than population density of aquatic exotic species richness
> Population density: difficult to separate human dispersal effect from observer effect in ad-hoc data
> Freshwater fishing demand is a mechanistic link

http://www.swl.usace.army.mil/

## Population Density Hot Spots



## Freshwater Fishing Demand



Mazzotta et al., 2015 Ecological Economics
Hot Spot - 99\% Confidence

## Population Bias

- Survey effort and propagule pressure both linked to human population density
- Our first task is to test for it by comparing BISON observations to data collected from a stratified random survey
$>$ Does it vary geographically?
$>$ Can we develop a correction ?

Results from Poisson regression comparing effects of std. population and recreational demand on richness

Freshwater fishing demand

## Population density

| Richness | $\exp (\mathrm{B})$ | $95 \% \mathrm{Cl}$ | $\exp (\mathrm{B})$ | $95 \% \mathrm{Cl}$ |
| :---: | :---: | :---: | :---: | :---: |
| animal | 2.35 | $[1.95,2.82]$ | 1.94 | $[1.81,2.07]$ |
| plant | 2.86 | $[2.34,3.51]$ | 1.96 | $[1.81,2.11]$ |
| total | 2.55 | $[2.15,3.03]$ | 1.95 | $[1.83,2.07]$ |

Use spatial mismatches between NLA and BISON data to test for population bias

- If present in NLA and not reported in BISON = mismatch
- If present both NLA and BISON= match


Are the spatial matches/mismatches influenced by population?


Points overlaid on map of population density by HUC 8

## Summary

- Freshwater fishing demand has a larger effect on exotic aquatic species richness
- Assessment of population bias is possible
$>$ we'll gain understanding of how much of a problem it is with ad-hoc and/or citizen science data sets


## Thank You!

## Please send questions/comments to:

## Davis.Amy@epa.gov

- Now we can investigate the drivers of aquatic species invasions and their impacts and how they vary geographically across the U.S.
- Assess threats to endemic species, protected areas, threatened \& endangered species


Biodiversity of the lower continental United States and priority areas for individual taxa.
Clinton N. Jenkins et al. PNAS 2015;112:5081-5086


