Evaluating & predicting impacts of globally invasive freshwater fishes using multi-population comparisons

Sunčica Avlijaš*, Nicholas Mandrak, Jonathan Fischer-Rush, Anthony Ricciardi

Context-dependency of invasion

Predicting Establishment

Predicting Impacts

Large-scale geographic comparisons

Evaluating & Predicting Impacts

- 1- Tench as a model species
- 2- Quantifying impacts of Tench and Round Goby in the St. Lawrence River
- 3- Predicting Invasion patterns using morphometric analysis

Tench (*Tinca tinca*)

Countries with at least one system invaded by Tench

Tench Impacts

Tench Impacts

HYPOTHESIZED COMPETITION (diet overlap studies)

(Giles et al. 1990, Kennedy and Fitzmaur 1970, Masson et al. 2013)

Quantifying impacts of Tench and Round Goby on resident fish communities in the St. Lawrence River

- (A) Historical analysis: pre-invasion versus post-invasion
- (B) Spatial analysis: invaded versus uninvaded
- (C) Diet study: identify potential competitors
- (D) FR Experiments: per capita effects``

St. Lawrence River Historical Data

Sampled by sector:

1995-present
One sector/ year
Gill nets
Seine nets

Round Goby and Tench in the St. Lawrence

Lac Saint-François

Lac Saint-Louis

Archipelago du Lac Saint-Pierre

Lac Saint-Pierre

Field study: invaded vs. uninvaded

Sites sampled in the St. Lawrence River 2015

Quantifying impacts

- (A) Historical analysis: pre-invasion versus post-invasion
- (B) Spatial analysis: invaded versus uninvaded
- (C) Diet study: identify potential competitors
- (D) FR Experiments: per capita effects

Forecasting Impact using Morphometric analysis

Data sources: archived collections & field photographs

Morphometrics of native & non-native fishes in three South African rivers

Morphometrics of native & non-native fishes in the Olifants River (S. Africa)

- Introduced species
- Tench

- 1. Austroglanis gilli 2. Barbus andrewi
- 3. Barbus calidus
- 4. Barbus serra
- 5. Galaxias zebratus
- 6. Labeo seeberi
- 7. Labeobarbus capensis
- 8. Pseudobarbus phlegethon
- 9. Sandelia capensis

- 10. *Austroglanis barnardi
- 11. *Barbus erubescens
- 12. Cyprinus carpio
- 13. Lepomis macrochirus
- 14. Micropterus dolomieu
- 15. Micropterus salmoides
- 16. Micropterus punctulatus
- 17. Oreochromis mossambicus
- 18. Tinca tinca

Morphometrics of native & non-native fishes in the Olifants River (S. Africa)

Ha: Impact increases with distinctiveness (e.g. novel predator)

Hb: Impact increases with similarity (e.g. competition, hybridization)

Predicting Impacts

- Quantify Impact under different contexts
- Compare impact across disparate sites:
 - Relate abundance and per-capita effects to abiotic variables (Field surveys & Functional response experiments)
 - Incorporate effect of recipient community context (Morphometrics)

Acknowledgements

Ministère des Forêts, de la Faune et des Parcs

Ricciardi Lab W McGill

Olaf Weyl, Darragh Woodford, Rowshyra Castaneda, Steven Crookes.

Tench in North America

(c) Diet overlap (H₁)

Competition

Tench, Round Goby & co-occurring fishes:

- stomach content ID
- quantify overlap
- Identify potential competition
- Correlate to declines (in a & b)

(d) Functional response experiments

Fr experiments comparing per capita effects of invasive and native fishes under varying environmental parameters

• E.g. DO, Specific Conductivity, turbidity

Shape space: modeling biotic interactions

- very abundant
- occasional to common; never very abundant
- rare
- ▲ native species

Niche utilization is constrained by phenotype

(Azzurro et al. 2014 in Ecology Letters)

Bower and Piller 2015, Journal of fish biology

Fig. 3. Principal component analysis of all species from Tickfaw River (Lake Pontchartrain basin), with 95% confidence ellipses and consensus body shapes for each ecomorphotype: 1, generalist ecomorphotype (•); 2, top-water ecomorphotype (•); 3, structure-oriented ecomorphotype (•); 4, benthic ecomorphotype (•); 5, roaming-predator ecomorphotype (•). The first axis describes the changes in the dorsal-fin and pelvic-fin placement, and the variance in the second axis explains the compression in body shape dorso-ventrally.

- Morpho shape predicts trophic guild
- No correlation of shape with substrate or stream depth
- Found a correlation between flow and shape
- Weak correlation between depth and shape (in non-stream fishes)

Oliveira et al. 2010, Neotropical Ichthyology

- Strong correlation to trophic guild
- Poor correlation with habitat

Smith et al. 2015, Evolutionary Biology

Comparison of centrarchids

- Found no correlation between habitat (pelagic vs benthic) and shape
- Strong correlation between shape and diet