Use of a Differential Simple Stain to Confirm Mortality of Dreissenid Mussels in Field Research Experiments

Kelly Stockton-Fiti

&

Renata Claudi

19th International Conference on Aquatic Invasive Species 2016

Veliger Toxicity Studies

- Determination of live and dead veligers
 - Observe each individual veliger for cilia or organ movement up to 5 min
 - Hold for a period of time to determine if settlement will occur

Z/Q Veliger Toxicity Studies — Problem Definition

Long hours staring into microscope

Low sample sizes=low statistical certainty

 Low confidence of mortality due to movement by post-mortem decomposers

Potassium Toxicity Studies

- Potassium found to relax mussels
 - Vellum completely out of shell
- Treated veligers had no movement = dead?
 - After 24+ hours in recovery they were living

Sykes et al. reported both veliger conditions as dead

Biological Staining Techniques

- Neutral Red (stains living tissue)
 - Found hard to differentiate in samples stained for less than 3 hours
 - Easy to differentiate for up to 24 hours after stained for 3 hours
- Other stains?

Background on Fast Green

- Commercial food dye
- Biological viability stain to determine dead tumor cells
- Non-lethal marker for arthropods

Detection of skin injury sites on Chinook salmon

smolts

Mollusks and Fast Green Dye

Marine mussel spat assessment staining

Webb & Heasman 2006. Viability testing for mussel spat. New Zealand Aquaculture 14: 12-13.

Dreissenids and Fast Green Dye

- Method development for z/q mussels veligers & juveniles (Link, Claudi, & Taraborelli ICAIS 2013)
 - 4% solution of Fast Green for 20-30 min
 - Rinse well and observe with 40x microscope or hand held

Confirmed "no impact" of fast green stain on live

veligers

Latest Application of Fast Green Staining Technique

Objective – Assess condition of veligers exposed to potassium chloride to build a toxicity curve and end point with high certainty

Methods

- Collect veligers- sieving out large algae or zooplankton
- Divide out concentrated veligers into test beakers
- Exposure dose: 960 mg/L KCL solution
- After exposure time, rinse off test solution
- Place in 4% Fast Green solution for 20-30 min
- Rinse off dye solution well and put into beaker
- Analyze with 40x-100x microscope within 2 hours

Veliger Stain Analysis

A. Dead B. Live C. Empty

Results

- Used two different filtered water sources to dissolve dye
 - No difference in staining effect
- > 100 veligers analyzed in each of three replicates per exposure time period
- 5-15 min analysis time for each replicate

Confidence in Analysis

Quickly see which are dead out of a group of veligers

Very Apparent at 100X

Live Veligers Stain Partially

Easy to Find in Plankton

No Harm to Zooplankton

Statistical Analysis

- Probit model was constructed with small confidence intervals
 - High sample size
 - Low variation across replicates

Conclusions

- Fast Green Stain can be used to determine mortality
 - Low processing time (20 to 30 min)
 - Quickly (5-15 min) to count over 100 veligers
 - Easily pick out from other debris or organisms
 - Highly confident in assessment of morality
- Eliminates the need for recovery period or prolonged studies to determine the status of the veliger
- Toxicity studies using Fast Green Stain method should be regarded as accurate for use in rapid response of eradication efforts

