Mortality responses of Quagga Mussels to KCI Solutions in Different Source Waters

Christine Moffitt U.S. Geological Survey University of Idaho

Kelly Stockton-Fiti KASF Consulting

19th International Conference on Aquatic Invasive Species 2016

KCL as a Control Tool?

- Disinfection of equipment, boats, or fish hauling trucks
- Prevention of settlement or establishment
- Response to introduction in open or contained waters
- Low risk to nonmolluscan species, fish, vegetation, or human exposure

KCI (Potash) to control Z/Q Mussels

- <u>Veliger</u> zebra mussels KCI (~ 750 mg/L) + chemical
 - 100% mortality in Great Lakes region
 - Short exposure times (2-3 hrs)
 - Showed little harm to fish with short term exposure
- <u>Byssal</u> zebra mussels ~100 mg/L for 30 days
 - Milbrook Quarry, VA
 - Lake Winnipeg and Christmas Lake, MN
- <u>Veliger</u> quagga mussels >2,000 mg/L
 - Colorado River at WBNFH by Sykes showed no veliger mortality
 - Colorado River at LMFH by Pucherelli et al. no veliger mortality

Uncertainty in Data and Efficacy

- Few studies addressed quagga mussels
- Water quality criteria not addressed in studies of efficacy
- Temperature and time of year effects?

Objectives

- Test efficacy of KCI as a toxicant on byssal and veliger quagga mussels
- Compare responses in different water sources
- Explore response with water quality criteria such as conductivity and metals

Studies at WBNFH

• May – June, & August – Sept

- Static exposure to KCI
 - Byssal stage: 100 and 200 mg/L with renewals every 48 h
 - Veligers: 960 mg/L
- Tests with Colorado River water, U of I groundwater & Snake River water

Columbia River Water Sources

Ground water, Moscow, ID

Pathogen free, filtered, dechlorinated well water

Studies in Lake Ontario

- October Dec 2015
- Water and mussels from Lake Ontario Waupoos Marina
- Static exposure to KCI
 - Byssal stage: 100 mg/L with renewal after 48 h
 - Veligers: 960 mg/L

Veliger trials – 960 mg/L

- May June, August Sept, October
 - WBNFH Colorado River, Snake River, UI ground water, and Lake Ontario at Picton

- KCI (analytical grade) @ ~ 20°C
- Exposure times of 1, 3, 4, 5, 8, 10, 12, 24 hours
- Fast green dye used to assist assessment of mortality
- Water quality analysis
 - Salinity, pH, DO, cond, TDS
 - Metals profile
 - Dissolved and total
 - With and without KCI

Variations in mortality to KCl within different water sources

Probability of Mortality

- Colorado River little to no mortality over 24 h
- Lethal Time 50%
 - UI water = 2.7 h
 - ON = 3.7 h
 - SR water = 5.8 h

Differences in Water Quality

Source	Temp (°C)	рН	Specific conductivity (ms/cm)	TDS (mg/L)	Salinity (ppt)
U Idaho	22.2	8.1	0.37	0.25	0.18
Snake River	22.8	8.1	0.47	0.31	0.23
Colorado River	22.2	7.9 - 8.2	1.08 – 1.02	0.67	0.51
Lake Ontario	20.0	8.3	0.33	0.21	0.15

Differences in Water Quality

Source	Temp (°C)	рН	Specific conductivity (ms/cm)	TDS (mg/L)	Salinity (ppt)
U Idaho	22.2	8.1	0.37	0.25	0.18
Snake River	22.8	8.1	0.47	0.31	0.23
Colorado River	22.2	7.9 - 8.2	1.08 – 1.02	0.67	0.51
Lake Ontario	20.0	8.3	0.33	0.21	0.15

Metals Profile of Water Sources

- Na+, Ca++,
 Mg++ higher in
 Colorado River
 water source
- No difference in K+ levels of test waters after KCI addition

Adjusted Conductivity of Snake River and Lake Ontario with NaCl Addition

Source	Sp. Cond (ms/cm) unadjusted	Adjusted conductivity	Adjusted TDS	Adjusted salinity
Colorado River Not adjusted	1.02 – 1.08	1.02 - 1.08	0.67	0.51
Snake River	0.47	1.04	0.68	0.52
Lake Ontario	0.33	0.91	0.59	0.45

Survival of Veligers in Lake Ontario and Snake River Water Compared with Colorado River

Veliger Survival in 960 mg/L KCI

Survival Comparisons with NaCl addition Equivalent to Colorado River

Veliger Survival in 960 mg/L KCI

Survival in salinity adjusted water resembled that in Colorado River water

Byssal Quagga in KCI?

Comparison of Water Sources

- 200 mg/L: 100% (8-10 days)
 - 100 mg/L: Similar
 patterns as
 veligers, high
 survival in
 Colorado River
 water, but rapid
 mortality in other
 surface waters

35

What Happens with Addition of
NaCl?Survival in 100 mg/L KCl

Survival in Controls – no KCl?

Survival of Controls

Discussion

- Confirmed Sykes and Pucherelli et al. results
- Metal ion analysis and conductivity, TDS, and salinity are important water quality parameters to include in chemical toxicity trials
- Not a large seasonality effect at WBNFH

Conclusions

- Na+ content of source waters may be <u>key factor</u> determining mortality in KCI treatments
- Na+/K+ ion exchange membrane in quagga and zebra mussels functions similar to that of fish and other organisms
 - Though Na+/K+ exchange in Z/Q mussels is particularly active (over other mollusks)
- Probability of survival of Colorado River mussels may be reduced if transported into areas of lower conductivity/salinity. Higher risk <u>may be associated</u> with quagga/zebra mussels adapted to low conductivity!

Acknowledgements

- Funding Utah Division Wildlife Resources, USFWS, USGS, PSMFC
- Staff and facilities at WBNFH, manager Mark Olson and Asst Mgr. Tom Frew
- Dave Parrish IDFG, and Bob Kibler USFWS for help with water collection and shipping

