Benefits Derived in Louisiana from the Long Term Management and Control of Waterhyacinth (*Eichhornia crassipes*)

Alfred F. Cofrancesco¹ Lisa A. Wainger², Nathan E. Harms¹, Anna McMurray² and Geneviève M. Nesslage²

¹ U.S. Army Engineer Research and Development Center

² UMCES Chesapeake Biological Laboratory

US Army Corps of Engineers BUILDING STRONG_®

Ecosystem Goods and Services

Investigate the utility of and develop practical guidelines for considering and analyzing ecosystem goods and services into Federal Decision Making

"Providing Solutions To Tomorrow's Environmental Challenges"

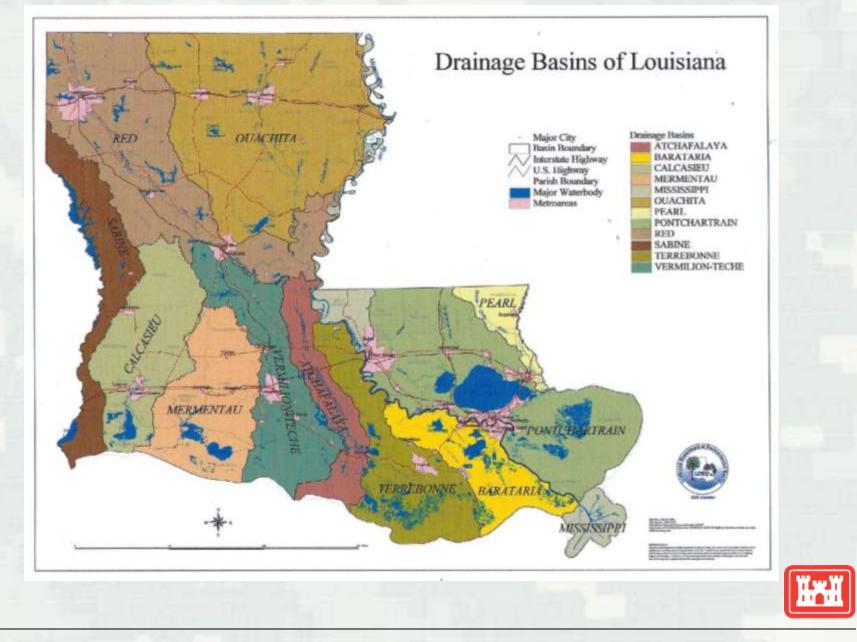
Ecosystems Restoration Goods and Services

Problems

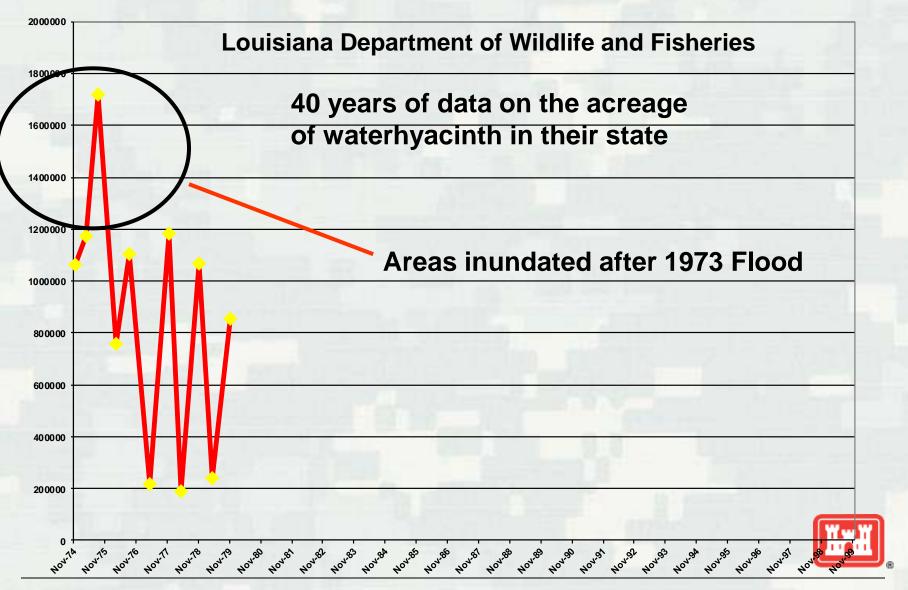
- Restorations have not been monitored
- Metrics hard to monetize

Needs

- ► Extensive Data Abiotic & Biotic
- Numerous Factors/Interactions



Eichhornia crassipes (Mart.) Solms (Waterhyacinth)



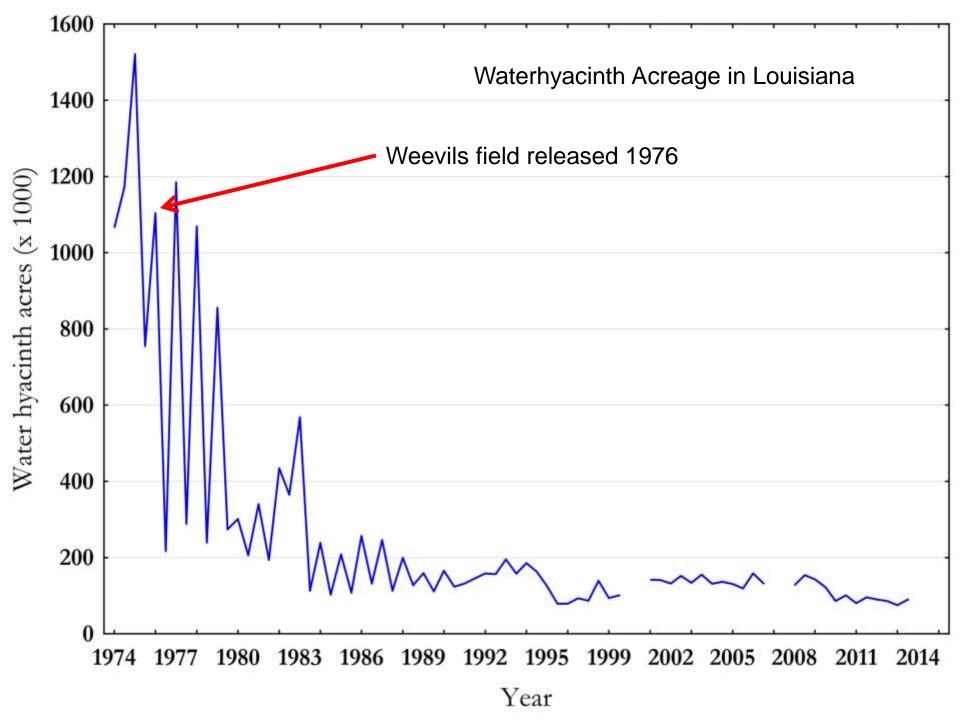
Waterhyacinth Acreage in Louisiana

Historical Waterhyacinth Infestations

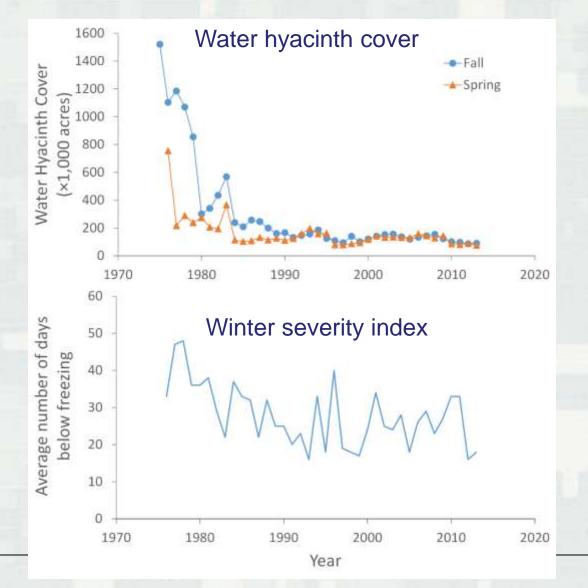
BUILDING STRONG_®

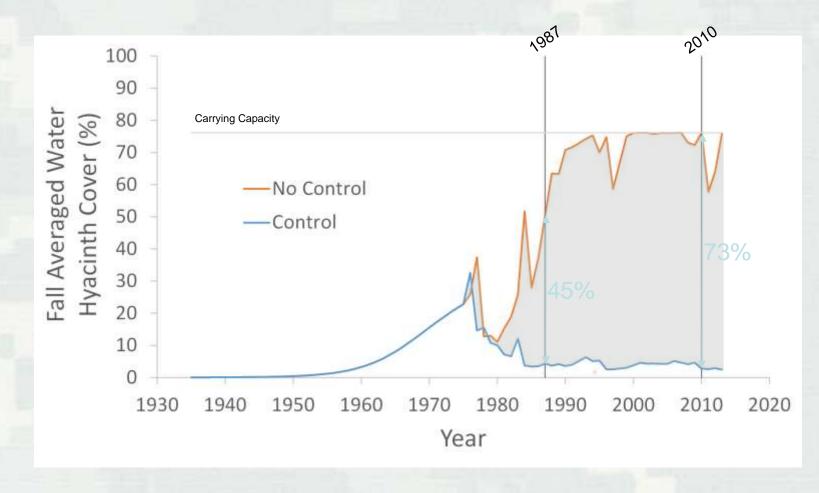
Ecosystem Service Benefits of Waterhyacinth Control

- To develop an example analysis of benefits by quantifying EGS benefits that are impacted by aquatic invasive plant and management
 - Create a framework applicable to other aquatic invasive plant management
 - Waterhyacinth in Louisiana as primary test case


Economic Assessment of Benefits Associated with Invasive Plant Management

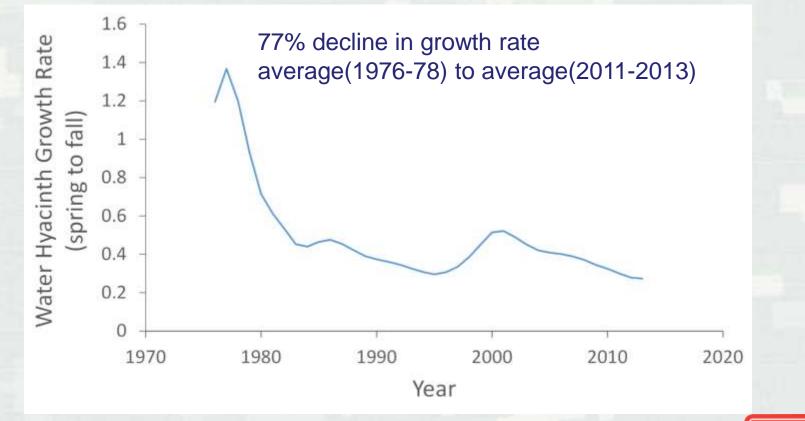
NEEDS TO BE DOCUMENTED, STANDARDIZED, AND USED AS A MEASURE OF PERFORMANCE




BUILDING STRONG_®

Modeling the no-control "counterfactual" scenario with historic data

Benefits are losses avoided Difference between control and no-control scenarios


EGS Evaluated

- 1. Recreational Fishing
- 2. Recreational Hunting
- 3. Boat-dependent tourism & recreation ("swamp tour" companies, marinas)
- 4. Water Supply
- 5. Flood risk reduction
- 6. Commercial navigation
- 7. Commercial fishing
- 8. Non-use services (existence values for species and ecosystems)

Statistical Model Results Annual water hyacinth growth rate over time

BUILDING STRONG_®

Economic Calculations

1. Benefit transfer using consumer surplus¹

User Value/day × # days/year = Annual EGS value

2. Damage costs (avoided) ^{Costs}/_{Entity} × ^{# entities}/_{year} = Annual EGS value

¹Consumer surplus - the difference between what people would have been willing to pay and what they paid to enjoy a good or service

Ecosystem Service Benefits estimated for 1987 & 2010

Impact	Affected Users/Entities	Annual benefit		
	USEIS/EIIIIIES	(Millions \$2010)		
		1987	2010	
Recreational	583,480 anglers	\$413.9	\$675.5	
freshwater				
fishing				
Recreational	19,400 waterfowl	\$5.2	\$8.3	
waterfowl	hunters			
hunting				
Boat-related	400 marinas	\$4.6 - \$8.0	\$5.2 - 9.2	
businesses	(South Louisiana			
	only)			
Drinking Water	77 drinking water	\$0.06 - \$0.2	\$0.08 - \$0.3	
Supply	intakes			
Total		\$424.5	\$691.2	

Costs

Cost Category	Organization	Cost (\$2014)	Costs per year (\$2014)*	Number of years*	Time period
Herbicide Research (APCRP)	USACE- ERDC	\$1,580,651	\$112,904	14	1976-1989
Biological Control Research (APCRP)	USACE- ERDC	\$1,162,496	\$77,500	15	1975-2014
Integrated Control Research (APCRP)	USACE- ERDC, MVN	\$699,516	\$58,293	12	1976-1989
Large Scale Operations Management Test (LSOMT)	USACE- ERDC, MVN	\$2,136,150	\$356,025	6	1975-1980
USACE Herbicide Application	USACE	\$84,802,683	\$2,494,196	34	1975 -2012
State Herbicide Application	LDWF	\$20,498,629	\$590,220	35	1975-2013
Total		\$ 110,880,124			

Over 35 years average annual cost is \$3.1M

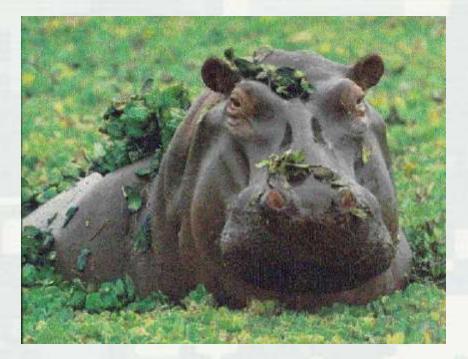
EGS Evaluated

- 1. Recreational Fishing
- 2. Recreational Hunting
- Boat-dependent tourism & recreation ("swamp tour" companies, marinas)
- 4. Water Supply
- 5. Flood risk reduction
- 6. Commercial navigation
- 7. Commercial fishing
- 8. Non-use services (existence values for species and ecosystems)



Conclusions Treatment effectiveness

- Our statistical analysis showed a 77% decline in water hyacinth growth rate
- Suggested that biocontrol has led to a major reduction in waterhyacinth cover
- Without biocontrol, the total coverage in Louisiana today would be on the order of 45% higher in the spring and about 73% higher in the fall
- Provides an assessment procedure that elucidates the benefits derived over time



Conclusions Benefit Assessment

- The order of magnitude of benefits preserved due to waterhyacinth control in one recent year (2010) could be as high \$691 Million (2010 dollars)
- The vast majority of benefits are from preserving recreational freshwater fishing
- A full benefit estimate over 1975-2013 is likely to reveal a substantially higher value and be much higher than program costs
- Damages for recreational service are likely to be overestimated since freshwater anglers and hunters would find substitute forms of recreation to offset some of these losses (values are being refined)
- However, we were not able to monetize all types of benefits, which would tend to increase total benefits

Questions

BUILDING STRONG_®