

Zebra Mussel Eradication- Lake Winnipeg Harbours

Wednesday, April 13th, 2016

- Commercial Diving
- Remotely Operated Vehicle (ROV) inspections
- Marine Geophysical Surveying and Underwater Mapping

ASI Water

- Bio-fouling
- Operations
- Engineering
- Laboratory

Background

- October 2013 Manitoba Department of Water and Conservation Stewardship are notified of possible zebra mussel discovery.
- Survey completed on harbours within Lake Winnipeg by Department of Water and Conservation Stewardship staff to determine if mussels were present in other harbours.
- Zebra mussels discovered at four isolated harbours within the South Basin of Lake Winnipeg
- Vector of infestation unknown.
- Winter freeze prevented further investigation in 2013.

Choices/Decisions

- Government left with difficult decision on how to proceed.
- Limited information, isolated areas, mussels found only amounted to a handful of individuals
- How did they get there??
- Are these isolated occurrence's connected to pleasure craft mobility?
- Is Greater Lake Winnipeg colonized?
- What is the cost of an eradication attempt? Is it possible?
- What is the cost of doing nothing?

Lower South Basin

The Path Forward

- March 2014 Province decides to proceed with eradication attempt.
- Access to and from impacted harbours restricted until eradication completed.
- ASI Group approached to design treatment strategy using Potash as the control agent.
- ASI Group had successfully eradicated mussel populations from Millbrook Quarry located in the Commonwealth of Virginia in 2006.
- Site visit to assess the logistics.

Millbrook Quarry

- Successful eradication within open water body.
- Quarry not fed from surface water supply, only groundwater.
- Only chance of success eradication at infested harbours was to replicate the Millbrook Quarry experience.
- Greatest difference and potential barrier to success is the exposure to open water at Lake Winnipeg.

Winnipeg Beach

Silver Harbour

Proposed Strategy

- ASI proposes to replicate Millbrook Quarry experience by isolating each harbour from Greater Lake Winnipeg.
- Isolation achieved by deployment of silt curtains fitted with floatation at the surface and ballast chain at the bottom.
- Once isolated each harbour would be charged with 100 mg/L K+ via the addition of KCL 20%.
- Proposed methodology accepted by the Province.

Typical Silt Curtain Installation

Problems!!!!

- Design and preparation for the project continued on this basis.
- In early May the proposed treatment became public knowledge.
- Backlash was strong particularly from groups impacted by restricted harbour access.
- ASI was tasked with redesign of the silt curtain structure to allow access in and out of treated harbours by water users.
- ASI engineers and Marine staff completed in-house review and design modification to create a retractable silt curtain.

Typical Silt Curtain Installation

TYPICAL SILT CURTAIN RAISED

TYPICAL SILT CURTAIN LOWERED

Typical Silt Curtain Installation

Phase 1: Potash Charge

- Mobilized to site May 19.
- Proceeded to set up injection and storage facilities.
- Launched boats.
- Prepared hose for use.
- · Met with all stakeholders.
- Conservation officers

Phase 1: Potash Charge (Temporary Tank Farm)

Phase 1: Potash Charge (Hose Assembly)

- Potash delivered to the site each morning.
- Approximately 5,200 USG per shipment.
- 20% KCL solution
- Tanks connected in parallel to provide continuous daily supply.
- Potash gravity fed from storage tanks to booster pumps.
- Supply pumps loaded in series.
- Minimum of 11,900 USG pumped each day.

- Potash entered Sealander via 360 rotating irrigation fitting.
- Distributed to each harbour via diffuser assembly.
- Diffuser depths set at 10 ft.

- Depending on size, each harbour divided into treatment zones.
- Zones treated individually per day.
- Length of hose changed depending on zone being treated.
- Flow rates between 90 120 l/min.
- Background samples collected prior to commencement of treatment.
- Charge activities begun on May 24 and concluded on June 8.

- Samples collected daily.
- Concentrations in each harbour characterized via depth samples
- Analyzed for K+, Temp
- Collected at key locations within each harbour.
- GPS coordinates logged.

Phase 2: Bioassay (Set up)

- Permit from Conservation and Water
 Stewardship obtained to move 4000 zebra
 mussels into the Province of Manitoba.
- Installed once charge activities had been completed on a given harbour.
- Total of 35 bioassays deployed via Bio-Tubes.
- Recovery bath installed at Gimli harbour with water supply from Lake Winnipeg.

Phase 2: Bioassay (Deployment)

- Installed along transects closely following original sampling locations.
- Locations marked with buoys and fixed in place via cinder blocks and 5/8" rope.
- Bioassay chambers placed at various depths along each buoy.

Phase 2: Bioassay (Deployment)

- Mussels checked periodically for signs of K+ intoxication.
- Affected mussels removed in groups of 10 and transferred to recovery chamber, containing untreated water.
- Mussels in recovery chamber were examined at 24 hour and 48 hour intervals to determine latent mortality.
- Mussels which did not recover after 48 hours were deemed to have died.

Final Results Winnipeg Beach

- Charge activities begun on May 24 and concluded on May 30.
- 191,000 litres of KCl (20%) added to harbour during charge period.
- Target concentration of 100 mg/L K+ maintained throughout the harbour.
- Water Temperatures (9.8 C 20.5 C)
- 100% mortality reached at all Bioassays by June 1.
- Technical challenges were encountered due to adverse weather conditions which extended the charge period.

Final Results Balsam Bay

- Charge activities begun and completed on May 27.
- 9500 litres of KCI (20%) added to harbour during charge period.
- Target concentration of 100 mg/L K+ maintained throughout the harbour.
- Water temperatures (13.9 C to 20.0 C)
- 100% mortality reached at all Bioassays by June 1.
- No significant issues encountered during this application.

Final Results Gimli Harbour

- Charge activities begun on May 31 and concluded on June 12.
- 435,000 litres of KCI (20%) added to harbour during charge period.
- Target concentration of 100 mg/L K+ maintained throughout the harbour but not consistently.
- Water Temperatures (9.8 C 20.5 C)
- Curtain failure occurred on June 8 which did not get repaired until June 11.
- Concentrations were significantly depleted and required recharge.
- 100% mortality finally reached at all Bioassays by June 12.

Final Results Silver Harbour

- Charge activities begun on June 6 and concluded on June 9.
- 144,000 litres of KCI (20%) added to harbour during charge period.
- Target concentration of 100 mg/L K+ maintained throughout the harbour.
- Water Temperatures (11.4 C 18.0 C)
- 100% mortality finally reached at all Bioassays by June 12.

Conclusions

- Eradication attempt was successful in each treated harbour,
 - BUT.....
- Further confirms viability of open water body treatments.
- Impressive response time by the Province to implement this project!!!!!!

Thank-you

