

Development of a novel platform to control filter-feeding aquatic invasive fishes

Jon J. Amberg, Blake W. Sauey and Joel G. Putnam
United States Geological Survey
Upper Midwest Environmental Sciences Center
2630 Fanta Reed Road

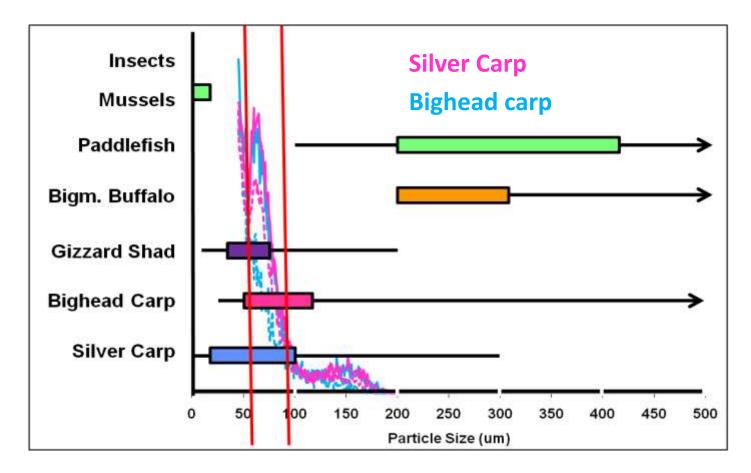
La Crosse, Wisconsin

Outline

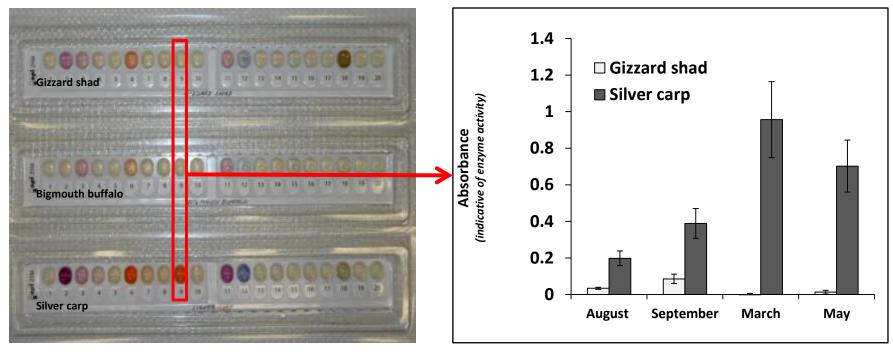
- 1. The problem
- 2. Finding an 'Achilles heal'
- 3. Particle development
- 4. Laboratory efficacy trials

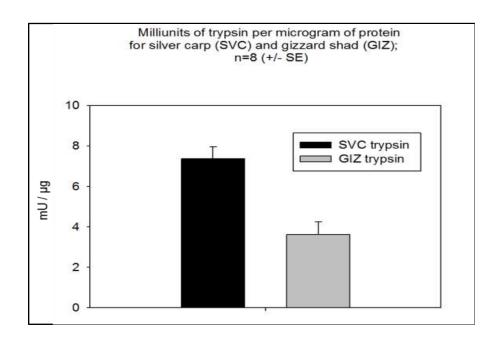
The Problem

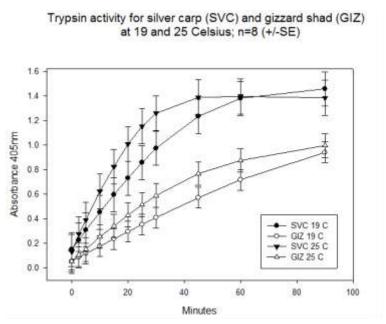
- Focused on the Bigheaded carps
 - Currently threaten the Great Lakes
- High population downstream in Illinois River
 - Increased pressure on barrier
- Limited number of tools
 - Broad spectrum piscicides
 - Impact native species


Finding the 'Achilles Heal'

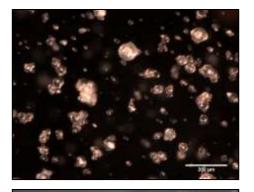
- Use a trait of the animal to your advantage
- Question Can we take advantage of their filter-feeding strategy?
- Filter-feeders in Mississippi River?
- Conducted trials to identify size preference

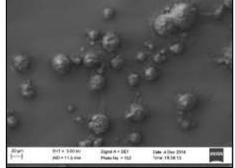



Increasing Selectivity


Identify digestive enzyme to release the control agent

Validation





Oral Delivery Formulation

Need it to:

- 1. Hold the control agent
- 2. Appropriate size
- 3. Likely consumed
- 4. Release under the "right" conditions
- 5. Scalable

Industrial Processes

- Spray atomization
- Coacervation
- Co-extrusion
- Fluid bed coating

Photos source: SwRI

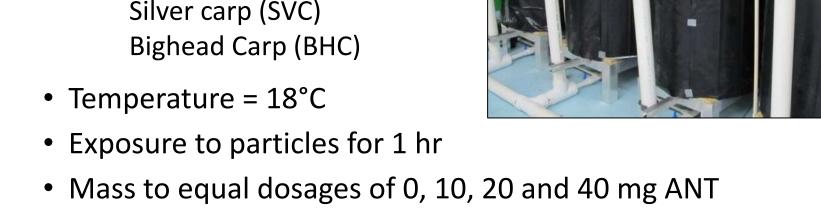
Concurrent Research

- Focus on the chemical
- Quantitative Structural Relationship Analysis (QSAR)
 - Models to predict toxicity
 - Identify potential <u>new</u> piscicides
 - Requires registration (yrs)
 - Current focus on delivering antimycin-A

Leaching of the Control Agent

Particle	% Leach
20% Antimycin A in beeswax core	0.02
Caster oil 0.09% Antimycin A palmitate core	1.41
Algae coated 0.18% Antimycin A palmitate core	1.28
Zein coated 0.18% Antimycin A palmitate core	1.33
Palmitate coated 4.11% Antimycin A beeswax core	0.05
Spirolina coated 20% Antimycin A in beeswax core	0.08
Zein coated 20% Antimycin A in beeswax core	0.04
Double coat - Zein on palmitate beeswax core	0.25

Efficacy Trials


Mixed culture

Largemouth bass (LMB)

Bluegill (BLG)

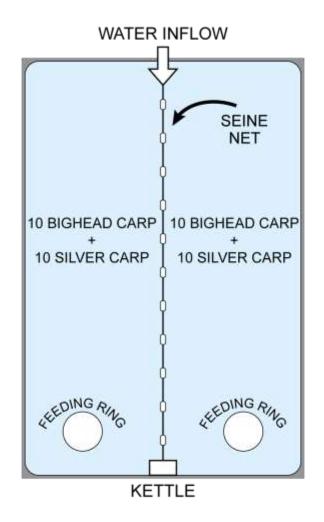
Paddlefish (PAH)

Silver carp (SVC)

Mass (g)	SVC	внс	BLG	LMB	PAH
0					
0.25					
0.5					
1					
LC50 (ppb)	0.65	0.35	0.16	0.2	0.001

Mass (g)	SVC	внс	BLG	LMB	PAH
0					0
0.25					0
0.5					20
1					100
LC50 (ppb)	0.65	0.35	0.16	0.2	0.001

Mass (g)	SVC	внс	BLG	LMB	РАН
0			0	0	0
0.25			0	0	0
0.5			0	0	20
1			20	100	100
LC50 (ppb)	0.65	0.35	0.16	0.2	0.001



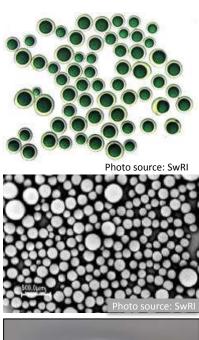
Mass (g)	SVC	внс	BLG	LMB	PAH
0	0	0	0	0	0
0.25	0	0	0	0	0
0.5	100	100	0	0	20
1	100	100	20	100	100
LC50 (ppb)	0.65	0.35	0.16	0.2	0.001

Ponds trial in Fall 2015

- Conducted at the USGS-CERC in Columbia, MO
- 0.25 acre pond split lengthwise
- 10 SVC & 10 BHC on each side
 - 40 total fish
- Fish were exposed to 2 g of microparticle with a feeding attractant
- Survival monitored for 48 h

Ponds trial in Fall 2015

- Some BC mortalities within 24 hours
- Remaining BC appeared lethargic
 - Showed a loss of equilibrium
 - Did not actively eat for several days
- Need slight reformulation
 - Slight clumping
- Repeat pond trials spring 2016
- Initiate field trials in IL in late 2016 to early 2017



Conclusions

- Designed an oral delivery tool that:
 - Is the right size
 - Does not leach
 - Is scalable
- Selectively killed bigheaded carps in laboratory trails
- Limited success in pond trials
- Completed reformulation
- Pond trials are being conducted spring/summer 2016
 - Potential field trials within the year

Acknowledgements

Microparticle formulations:

- Applied BioNutrition
- Southwest Research Institute

Animal collections:

Illinois Natural History Survey

Antimycin production:

Aquabiotics

Pond trials:

 Robin Calfee and crew at the Columbia Environmental Research Center

Funding:

- Great lakes Restoration Initiative
- USGS appropriated funds

