How effective are size-separation techniques for concentrating live organisms $\geq 10 \ \mu M$ and $< 50 \ \mu M$?

Stephanie H. Robbins-Wamsley¹, Scott C. Riley¹, Vanessa Molina¹, Matthew R. First², and Lisa A. Drake³

Chemistry Division, Naval Research Laboratory, Washington, DC 20375

¹Excet, Inc., Springfield, VA 22150

²Code 6136, Naval Research Laboratory, Washington, DC 20375

³Code 6136, Naval Research Laboratory, Key West, FL 33040

International Conference on Aquatic Invasive Species • 10-14 April 2016 • Winnipeg, Manitoba

Introduction: Size-Selective Filtration

- Obtaining accurate measurements of living organism concentrations in ballast water are important for both verification testing and shipboard compliance testing
- Some measurement approaches require a concentration step (e.g. when dealing with sparse populations) or a pre-filtration step (e.g. for increased size-selection of organisms)
- Filtration methods do not result in perfect size fractionation
- Physical filtering process can induce stress, mortality or loss of organisms
- These factors can lead to an underestimation of living organism concentrations

Introduction: Size-Selective Filtration

- Examine sparse assemblage concentrations (~10 organisms mL⁻¹) of the ≥10 and <50 µm size class (nominally protists)
- Measure differences in methods of sample filtration used in ballast water testing
 - Ambient marine plankton and laboratory microalgae cultures
 - Retention efficiency (RE)
 - Performance of mesh types and filtration configurations
 - Physiological changes (reduction in fluorescence or increase in mortality)
- Recommend optimal materials and procedures to improve analytical approaches for filtering organisms in the ≥10 and <50 µm size class

Idealized Mesh Types

Mesh Types: The Reality (SEM images)

o 35-μm Nylon

o 7-μm Nylon

o 5-μm Nylon

• 5-μm Metal

Mesh weave (3D geometric configuration not a standard square)

 Accentuated with decrease in nominal pore size

How will configuration differences effect organism retention and mortality?

Filtration Approaches

- No Filtration: Whole water
 - Used for comparison to filtered samples
- Single-Stage Filtration: Sample passed through one sieve
 - Used for direct counts via epifluorescence microscopy
- Sieve
- Organisms ≥50 µm are present but visually excluded from total counts
- **Double Filtration:** Sample passed through a series of **two sieves** with the **same mesh** size (ex. two 7-µm mesh sieves)
- **Dual-Stage Filtration:** Sample passed through **two sieves** with **different mesh** size (here, 35-µm then 7-µm mesh)
 - Minimizes interferences from organisms ≥50 µm

Sample Collection: Mixed Ambient Community

Sample Collection: Cultured Microalgae

Sample Analysis: All Sample Types

Sample Analysis Suite: 3 subsamples taken for each analysis type

Epifluorescent microscope counts

- FDA/CMFDA fluorochromes
- 1-mL volume on Sedgewick-Rafter counting chamber

Variable fluorescence

- Pulse Amplitude Modulation (PAM) fluorometry
- 3-mL volume
- 0 Day sample analyses

Epifluorescent microscope counts

- FDA/CMFDA fluorochromes
- 5-mL volume in a Bogorov counting chamber

20

0

Types Double mesh $(7 \,\mu m + 7 \,\mu m)$ Dual mesh $(35 \,\mu m + 7 \,\mu m)$

Bars = mean, 1 SDn = 3 to 6

log[Filtrand] (log[Filtrand] + log[Filtrate])

Retention Efficiency (%)

60

80

40

120

100

*5-μm Nylon mesh	§5-μm metal mesh sig.	No sig. diff. between
sig. lower than all	lower than the 7-µm	single, double and dual-
other mesh types	Nylon and dual mesh	stage filtering using 7-µm
(p<0.001)	(p<0.001) and double mesh	or 35-µm Nylon mesh types
	(p = 0.024)	

Results: Cultured Microalgae RE Calculated as: **Filtrand divided by filtrand + filtrate** Note: Single-stage, 7-µm Nylon mesh

Results: Ambient Physiological Changes

Conclusions: Living, Ambient Organism RE • Ambient Organisms:

- 7-µm Nylon mesh = Highest observed RE (95%)
- No significant difference in RE for all methods using 7-µm Nylon mesh (i.e., single mesh, a double-stacked mesh, or filtered through a dualstage, 35-µm mesh)
- 5-μm Nylon mesh = significantly lower RE than all other meshes); Possible causes:

• Lower % of open area = higher flow pressures = "squeezing" animals through holes

•Increased "embedding" of organisms in 3D mesh structure (not removed via rinsing)

Conclusions: Living, Cultured Microalgae RE

- Laboratory Cultures:
 - The 7-µm Nylon mesh had RE of >99% for three out of the four microalgae stocks

•Lower RE (96%) may occur with unicellular organisms near the 10-μm size threshold (as seen with *P. donghaiense*)

 Chain-forming species exhibited relatively strong chain-retention (cell recovery in the filtrand [>99%]) **Conclusions: Ambient Physiological Changes**

• Ambient Organisms:

- No significant physiological changes (i.e., changes in fluorescence) were recorded when comparing photochemical yield (F_V/F_M) among all filtration configurations
- For F₀ calculations combining filtrand and filtrate signals:
 - o7-µm filtrand represented 80%-90% of the total signal (ratio comparable to organism [≥10 and <50 µm size] retention in filtrand as measured by manual microscopy)

Final Conclusions

- Based on the findings,
 - Four filter configurations comparable to use in concentrating ≥10 and <50 µm organisms for live counts and variable fluorescence measurements
 - 1. double-stacked 7-µm Nylon
 - 2. 35-µm dual-stage Nylon filtered

3. single 7-µm Nylon

- 5-μm stainless steel with the exclusion of 5μm Nylon
- Single-stage, 7-µm Nylon specifically recommended based on ease of use

Acknowledgements

This work was funded by the US Coast Guard (USCG) Environmental Standards Division (CG-OES-3) (MIPR HSCG23-13-X-MMS106)

We thank **Richard Everett** and **Regina Bergner** for their programmatic support

This work does not represent the official position of the USCG

This work was supported by Diane Lysogorski and Elizabeth Hogan, Former and Acting Section Heads, respectively, of NRL Code 6136 and Directors of the Center for Corrosion Science and Engineering – Key West, Florida

Supplemental Slides

Laboratory Cultured Microalgae Stock

Cell Dimensions (min. to max. range)

Name	Length (µm)	Width (µm)	Chain- former	Image
Prorocentrum donghaiense	12-16	10-14	No	el Get harver
Prorocentrum micans	28-48	14-30	No	C Carl Hassan
Skeletonema tropicum	5-10	8-10	Yes	A Contraction of the second
Melosira octogona	16-24	14-26	Yes	

Results: Living, Ambient Organism RE

Calculated as: Filtrand divided by whole water

Results: Cultured Microalgae RE Calculated as: **Filtrand divided by filtrand + filtrate** Note: Single-stage, 7-µm Nylon mesh •Retention

Next Steps

•Filtration trials on additional mesh types

- Etched metal mesh
- Chemically-etched membrane filter (advantage: lacks 3D structure)
- Smaller pore sized nylon mesh (e.g., 3-µm nylon)
- •Examination of organisms remaining on filtration meshes
 - DNA extraction and identification