A RISK ASSESSMENT OF GOLDEN MUSSEL (LIMNOPERNA FORTUNEI) FOR ONTARIO

Gerry Mackie
University of Guelph

Invasion History

- An invasive epibenthic mytilid in freshwater and brackish water habitats in Asia (China, Japan, Vietnam, Taiwan) and South America
- The Golden Mussel was introduced to South America in 1991 through ballast water discharge into La Plata River basin at Argentina. Now in Bolivia, Paraguay, Uruguay, Brazil.
- The Golden Mussel is not YET present in North America.

Habitat Characteristics

- Same as dreissenids
- e.g. on solid substrates including rocks, roots, driftwood, concrete walls, docks, piers, gastropods, crayfish, clams, etc.
- Found as druses on loose silt or mud substrates
- Has similar high reproductive capacities and same nuisance characteristics and dispersal mechanisms as dreissenids
- **Differences:**
- Has wider environmental tolerances to pH and calcium and temperatures from 4-32° C

All photos provided by Gustavo Darrigran

Ontario Invasive Species Strategic Plan

 Developed by the Ontario Ministry of Natural Resources and Forestry in partnership with OMAFRA, MOE, and MTO (OMNR 2013).

- The plan is a method for conducting a risk assessment for the purposes of a rapid (1-2 weeks) response
- The over-riding objective is to prevent new invaders from arriving and surviving in Ontario.

Risk Assessment Process – A fourstep process

Step 1 -

Probability of invasion by Golden Mussel:

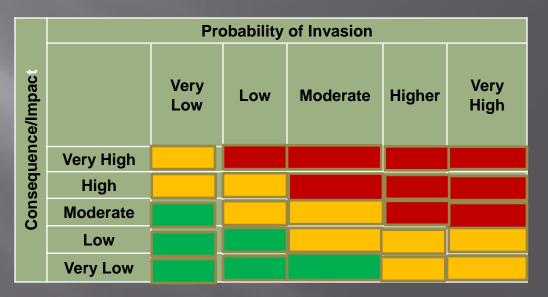
- Assessed by estimating probabilities of 4 stages:
- Arrival assessing likelihood of arrival through primary pathways
- Survival assuming it has arrived, what is likelihood of its survival?
- Establishment likelihood of not only surviving but reproducing and maintaining a population
- Spread the likelihood of Golden Mussel to spread

Stages of Invasion		
Category	Definition	
Very High	Probability estimated to be 96-100%.	
High	Probability estimated to be 61-95%.	
Moderate	Probability estimated to be 41-60%.	
Low	Probability estimated to be 6-40%.	
Very Low	Probability estimated to be 0-5%.	

The probability of invasion is then determined by using the lowest of the scores for the four stages of invasion.

Risk Assessment Process – A fourstep process

Step 2 -


Predicted Impacts of Golden Mussel

By estimating potential impacts at several levels, including biodiversity, natural resources, chemical and physical parameters, and any other impacts based on the literature reviewed

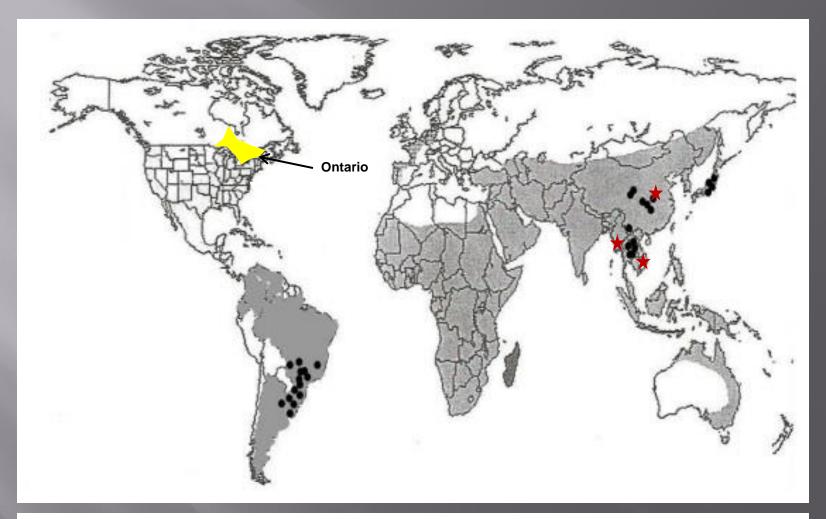
Definition	
A critical impact; extensive disruption to	
the factor in question that is irreversible.	
A significant impact; widespread	
disruption to the factor in question that	
persists over time or is likely not reversible.	
A measurable widespread impact;	
widespread disruption to the factor in	
question but reversible or of limited	
severity or duration.	
A measurable limited impact; disruption	
to the factor in question but reversible or	
limited in time, space or severity.	
Little measurable impact; consequences	
can be absorbed without additional	
management action.	
A positive impact; improvement of the	
factor in question or no discernible	
impact.	

Risk Assessment Process – A fourstep process

- Step 3 Potential Risk
- The impact rankings from Step 2 can be combined with the probabilities in Step 1 using a risk matrix to produce a final potential risk ranking of invasion. This is a risk matrix that ranks the potential risk as high (red), moderate (yellow) or low (green).

Estimating certainty

Step 4 - An estimation of uncertainty for each probability and estimated impact.


The definitions of certainty of probabilities of each stage of invasion and level of impact used in the following risk assessment, are provided in this Table.

Uncertainty			
Category	Definition		
Very High	Little or no scientific information; no supporting data.		
High	Limited scientific information; circumstantial evidence.		
Moderate	Moderate level of scientific information; first hand, unsystematic observations.		
Low	Substantial scientific information; expert opinion.		
Very Low	Extensive scientific/systematic information; peer-reviewed data sources/information.		

1. Probability of Invasion of Golden Mussel

Probability of invasion of GM was assessed by estimating the probability of:

- Arrival
- Survival
- Establishment
- Spread.

Global distribution of Asian Clam (shaded area) often associated with Golden Mussel, shown with closed circles. Asian Clam is also established in isolated areas of Ontario in Lake Erie and Lake St. Clair. Red stars are native ranges of Golden Mussel (China, Taiwan, Cambodia, Vietnam).

Probability of Invasion by Golden Mussel

Stage 1 - Probability of Arrival

- The potential donor regions are:
 - South America (Argentina, Uruguay, Paraguay, Bolivia, and Brazil).
 - Southeast Asia where it is native to China, Thailand,
 Vietnam and Cambodia, introduced to Japan.
- For Ontario most likely receptor region is the Great Lakes basin.
- Examined primary & secondary pathways
- The most likely source is ballast water from South America but depends on efficacy of ballast water exchange & other variables
- Summary of analyses is the level of probability of survival is low with low certainty

Probability of Invasion by Golden Mussel

- For Ontario most likely receptor region is the Great Lakes basin.
- The potential donor regions are:
 - South America (Argentina, Uruguay, Paraguay, Bolivia, and Brazil).
 - Southeast Asia where it is native to China, Thailand, Vietnam and Cambodia, introduced to Japan.

Probability of Invasion

- Primary pathways from which Golden Mussel could enter Ontario waters are:
- Ballast water in transoceanic vessels entering the Great Lakes
- Trailered boats if the species is introduced into other provinces or USA before Ontario

Probability of Invasion

- Secondary pathways from which Golden Mussel could enter Ontario waters are:
- Ballast water or hulls of coastal and inland ships
- Trailered boats from lakes/rivers already infested with Golden Mussel
- Unauthorized release of freshwater plants and animals with mussels attached, as in the aquarium trade (highly unlikely).

Probability of Invasion

- Ballast water:
 - Probability depends on:
 - Frequency of transoceanic vessels from donor regions (all operate outside of the Canadian and U.S. EEZs and all are currently foreign flagged).
 - NOBOBS vs BOBs.
 - Efficacy of ballast water exchange (BWE) or treatment.

Probability of Arrival/Survival

Ballast water (continued):

Estimating potential for introduction and magnitude of consequences of introduction:

- ballast volume discharged
- propagule pressure (based on biological sampling surveys),
- environmental similarity between donor and recipient ports (based on salinity and climate),
- number of high impact NIS in donor ecoregions,
- Effects of mitigation strategies

Country	Ports present	Freshwater ports			
	Asia				
China	401	99			
Japan	325	11			
Vietnam	63	9			
Thailand	37	4			
Cambodia	6	1			
South America					
Argentina	112	30			
Brazil	88	16			
Uruguay	14	3			
Paraguay	10	3			
Bolivia	1	1			

DONOR REGIONS

Of the 2 most likely donor regions, SA is the most likely because:

- It is closer to Great Lakes via the Atlantic
 Ocean than Asia via the Pacific Ocean.
- Two primary pathways from SA: (1) A single ship could transport GM from SA to Great Lakes (2) Overland transport from a port in USA to Great Lakes
- A single ship could transport GM to west coast of Canada but a "back door" entry via overland transport is needed to enter the Great Lakes.

Probability of Invasion by Golden Mussel

Stage 2 – Probability of Survival

According to matching climate in donor and recipient regions

	Donor Region			
Recipient Region	Arctic & Antarctic	Cold-temperate	Warm-temperate	Tropics
Arctic & Antarctic	High	Medium	Low	Low
Cold-temperate	Medium	High	Medium	Low
Warm-temperate	Low	Medium	High	Medium
Tropics	Low	Low	Medium	High

According to matching salinity in donor and recipient regions

Desirient Design	Donor Region		
Recipient Region	Freshwater	Brackish water	Salt water
Freshwater	High	Medium	Low
Brackish water	Medium	High	High
Salt water	Low	High	High

Stage 2 – Probability of Survival

Examined GM known ranges

pH (5.4-10.0)

[Ca] (1-50 mg/L)

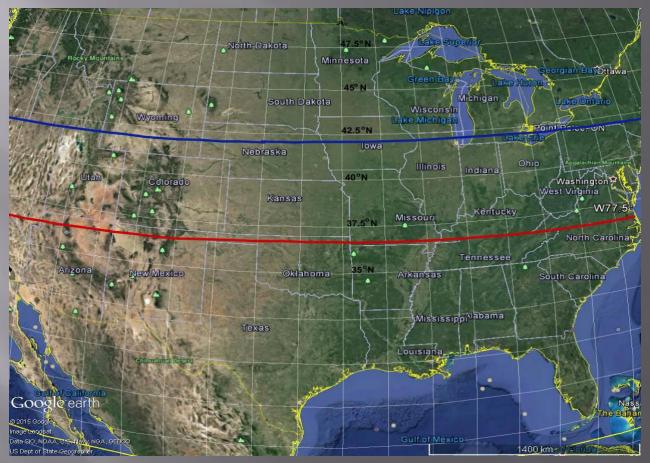
[D.O.] (0.2-12.7 mg/L)

Conductivity (14-1470 µS/cm)

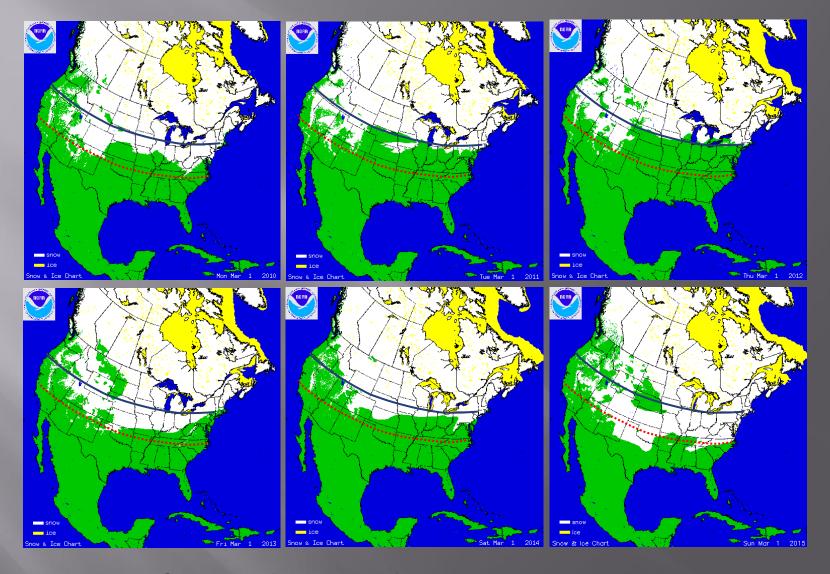
Temperature (4-32°C)

Ecological & Physiological Tolerances & Requirements pH, [Ca], [D.O], Conductivity in Ontario

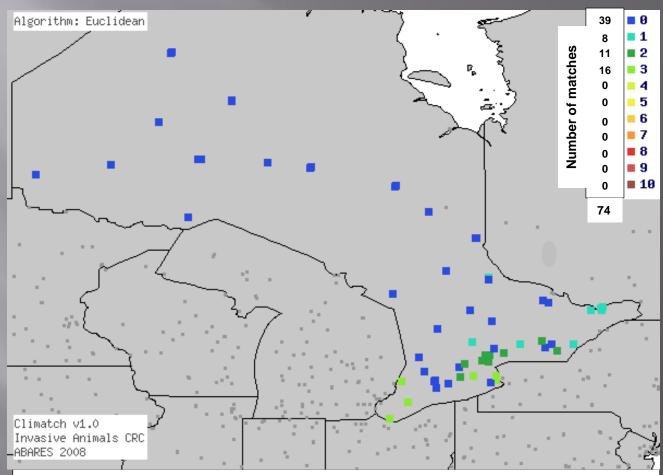
Winter temperature (not known from <4°C)



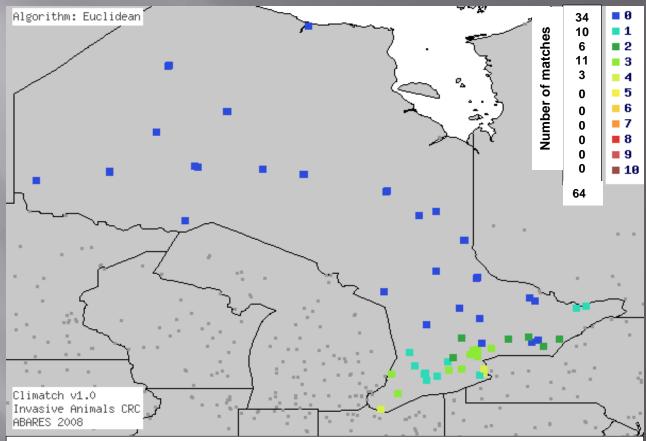
Summer temperature (21-36°C)



Summer temperature (21-36°C)

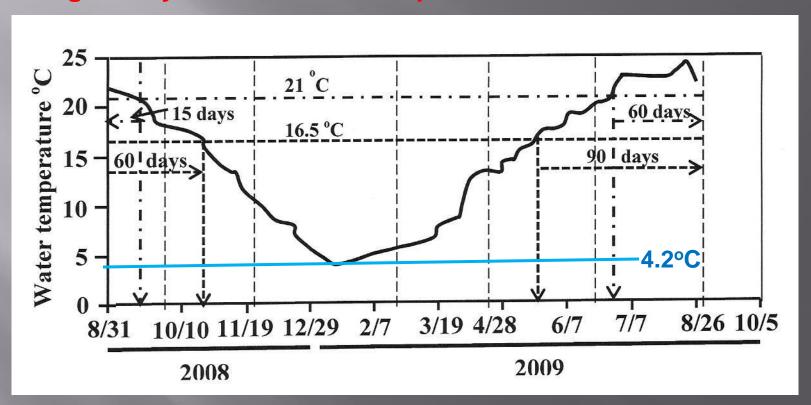


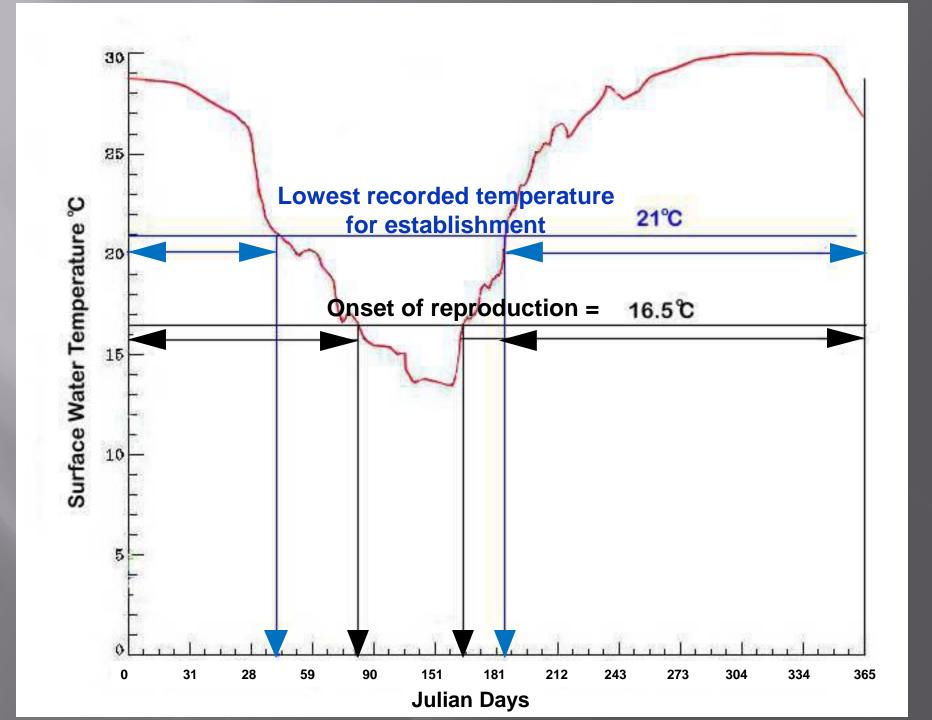
Potential northern limits of distribution of *Limnoperna* fortunei in NA is somewhere between 36° N (red line) and 41° N (blue line, Point Pelee, Western Lake Erie).

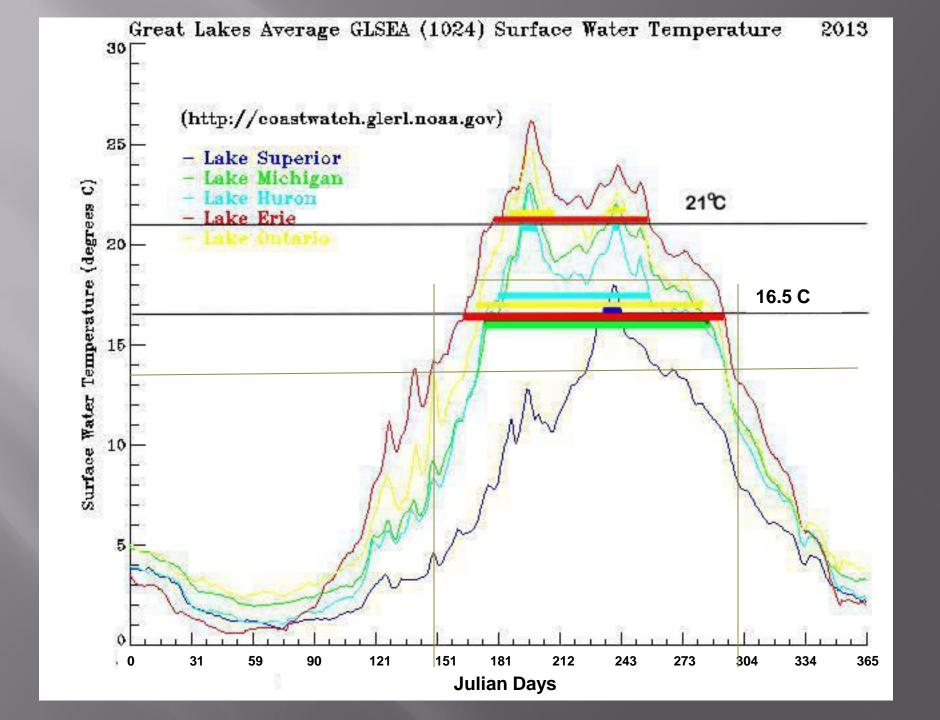


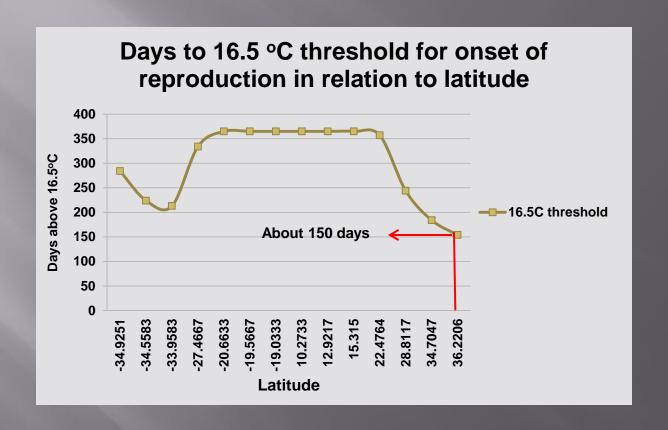
Snow cover in North America on March 1, 2010 to 2015.

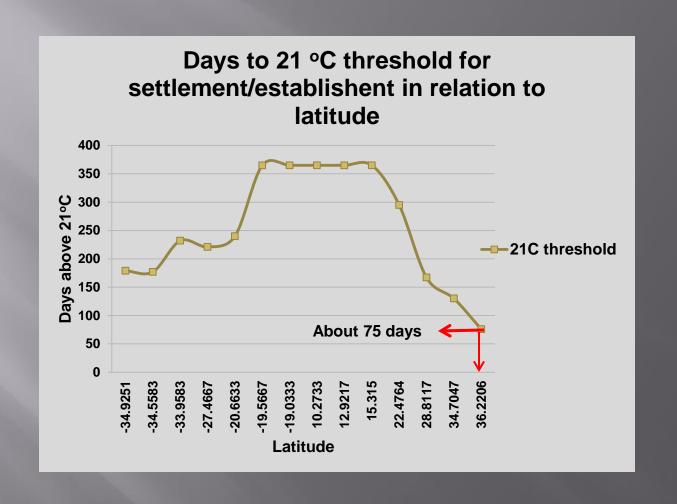
Blue solid line at 41°N (Point Peelee), red dotted line at 36°N.


Climatch results for *Limnoperna fortunei* in Ontario based on Clim<u>atch stations in Japan.</u> The number of matches for each climate symbol (0 to 10, 10 being most similar climates) shown in legend.

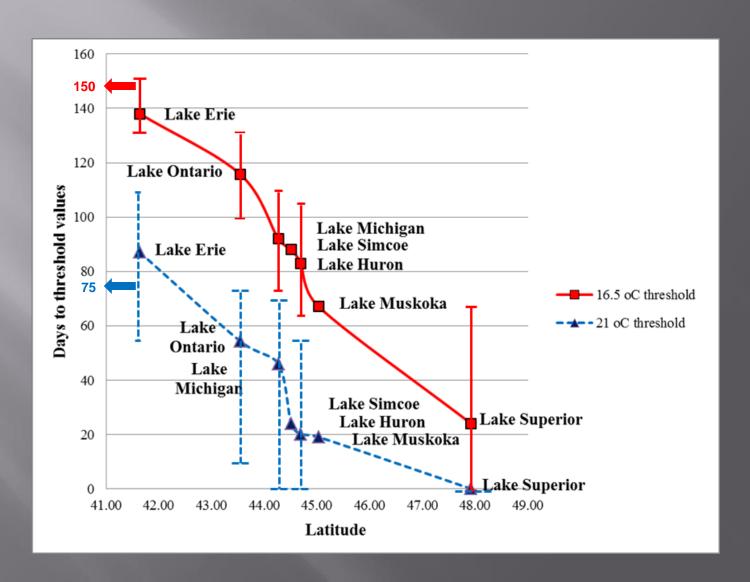

Climatch results for *Limnoperna fortunei* in Ontario based on Climatch stations in South America. The number of matches for each climate symbol (0 to 10, 10 being most similar climates) shown in legend.


Stage 3 – Probability of establishment


Degree days at threshold of reproduction & establishment



Lake Ohshio, Japan, seasonal water temperature variation. From Nakano et al (2011).



Stage 3 – Probability of establishment

Degree days at threshold of reproduction & establishment

Stage 4 – Probability of spread

Maximum summer distribution

Stage 4 – Probability of spread Winter distribution

- Currently, <4°C will limit spread of Golden Mussel in Ontario
- At current predicted increase of 1.8°C/30yr in Lake Erie it would take ~40 yrs for Lake Erie to reach 150 day threshold for reproduction and 5 yrs to reach 21°C for establishment
- At current predicted time to reach 4°C, it would take >150 yrs, and for 5°C > 200 yrs.

CONCLUSIONS

Probability of arrival

Pathway of introduction	Probability of arrival	Level of certainty
Ballast Water	low	low
Overland Transport	low	low

Probability of survival

Ecology/Physiology	Probability of survival	Level of certainty
Chemical (pH, Ca, etc)	high	high
Physical (temperature)	low	moderate

Probability of establishment

	Criteria	Probability of establishment	Level of certainty
	Reproducing potential	low	low
	Maintaining population	low	Moderate
Du	hobility of oprope		

Probability of spread

Pathways	Probability of spread	Level of certainty
Primary	Low	low
Secondary	Low	Moderate

Probability of Invasion is lowest of 4 scores = LOW with LOW certainty

Uncertainty of LOW probability

Major lack of empirical data on lower threshold temperature levels. Need:

1. Survival times @ 0-10°C for different size classes

If any survive, determine:

- 1. Rate of development from 0-16°C
- 2. Reproductive temperature (t_{repro}) literature 16-17°C
- 3. Growth rates between t_{repro} & 20-27°C (e.g. Lake Erie: lowest high 20°C; mean high 23°C; highest high 27°C)

THE END

