Environmental DNA (eDNA) as a monitoring tool for zebra mussels in Lake Winnipeg

Timothy Gingera MSc candidate, University of Manitoba

Figure 1: Distribution of ZM in the US and Canada

History of zebra mussels in Lake Winnipeg

- First detected in summer of 2013
- Found in four South Basin harbours
 - Balsam Bay Harbour
 - Gimli Harbour
 - Silver Harbour
 - Winnipeg Beach Harbour

- 425 adults removed in October 2013 from these harbours
- All harbours treated with KCL to kill ZM in May-June 2014
 Initially successful but ZM re-established in late fall
- Shift in strategy from eradication to prevention to limit spread in Manitoba

History of zebra mussels in Lake Winnipeg

- First detected in summer of 2013⁴
- Found in four south basin harbours
 - Balsam Bay Harbour
 - Gimli Harbour
 - Silver Harbour
 - Winnipeg Beach Harbour

- 425 adults removed in October 2013 from these harbours
- All harbours

 Initially sud Shift in strat spread in Ma

 All harbours

 Limiting spread is where environmental DNA comes in

 July 2014⁴ fall on to limit

eDNA sampling: species detection

- Most studies use species-specific quantitative polymerase chain reaction (qPCR) TaqMan assays
- Assays use short species-specific genetic markers which target short DNA fragments of target species

Species detection with eDNA

- False negative = no detection but target
- False positive = detection but target absent
- Negative controls are added at every step to indicate false positives

3 Independent Qpcr Assays for "Triplechecking" of Results

- Target fragments of COI, cyt b, 16s rRNA genes
 - One genus-specific (*Dreissena* 16s rRNA)
 - Two species-specific (*Dreissena* polymorpha COI and cyt b)
- Enables indirect detection of quagga mussel (Dreissena bugensis)

http://nas.er.usgs.gov/XIMAGESERVERX/2007/20070123100628.jpg

eDNA techniques for detecting ZM

- Step 1: develop assays and validate them to ensure that species other than ZM are not detected
- Step 2: sample sites within Lake Wpg (May, October 2014)
 - Areas that should be positive for ZM:
 - Balsam bay Harbour
 - Gimli Harbour
 - Silver Harbour
 - Winnipeg Beach Harbour
 - Hnausa Harbour
 - Areas should be negative for ZM in late fall:
 - Grindstone
 - Gull Harbour
 - Hecla
 - Red River
- Step 3: comparison of larvae netting and eDNA
 - Namao 2015 fall survey

South basin sampling – May 2014

- 2 to 3 samples taken from each harbour (and 2 to 4 replicates per sample)
- All harbours tested negative for ZM except for Winnipeg Beach
- The 2013 eradication and winter freeze/die-off in shallow water likely resulted in ZM density below detection limits

South basin sampling – October 2014

- 2 to 8 samples taken from each harbour (and 2 to 4 replicates per sample)
- All harbours tested positive for ZM
- Zebra mussels recovered after 2013 potash treatment
- Numbers were high enough to be detected consistently with eDNA

South basin – October 2014

- Between 2 and 8 samples taken from each harbour (2 to four replicates per sample)
- All harbours tested positive for ZM
- After reproductive and growth season, eDNA becomes more detectable
- Necessary to take multiple samples

Sample number	Balsam bay	Gimli	Hnausa	Silver	Winnipeg Beach
1	0/3	1/4	1/4	4/4	1/4
2	0/3	1/4	3/4	0/4	1/4
3	0/3	0/4		1/3	2/4
4	1/3	0/4		0/4	0/4
5	3/3	0/4			1/4
6	0/3	1/4			0/4
7	2/3	0/4			2/4
8	0/2				
Total replicates	6/23	3/28	4/8	5/15	7/28
Total samples	2/8	3/7	2/2	2/4	5/7

Narrows sampling – November 2014

- eDNA samples from Grindstone, Hecla, and Gull harbour
- No samples tested positive for ZM DNA
- ZM were not likely present based on veliger count data
- ZM have since expanded their range into the Narrows (veliger and eDNA data)

Locations: (1) Grindstone, (2) Gull Harbour, and (3) Hecla Village Harbour.

Red River sampling – November 2014

- 1 to 3 samples taken from five sites along the Red River (with 2-4 replicates per site)
- One eDNA sample tested positive: Floatplane dock
- ZM were later discovered in Selkirk (June 2015)

Red River – November 2014

- One eDNA sample tested positive: Floatplane dock
- ZM were later discovered in Selkirk (June 2015)

Sample number	Float- plane dock	Selkirk	Lockport	Redwood bridge	Forks	Southern flood gates
1	1/4	0/4	0/4	0/4	0/4	0/4
2	0/4	0/4	0/4		0/4	0/4
Total replicates	1/8	0	0	0	0	0
Total samples	1/2	0	0	0	0	0

Veliger comparison – September and October 2015

- 3 replicate samples collected from 17 sites from Lake Wpg.
- Parallel larval netting samples
- 1 site where no larvae or DNA were detected
- 1 site where larvae were detected but DNA was not
- 12 sites where larvae and DNA were detected
- 3 sites where no larvae were detected but DNA was

Conclusions

1. eDNA detects ZM

- 2. Detection appears to be dependent upon amount of eDNA in the water (i.e., late-season samples show more positives)
- 3. eDNA techniques responsible for the first detection of ZM in upstream areas of the Red River
- 4. ZM distribution may extend further north than previously thought, but...
- 5. False negatives are a constant threat!

Thank you

Questions?