Distribution, Demographics, and Impacts of the Island Applesnail (Pomacea maculata) in South Carolina: Past, Present and Future Research Efforts

By Elizabeth Gooding, Peter KingsleySmith, and Amy Fowler
DNR
SCDNR Marine Resources Research Institute

Origins and Distribution

> Pomacea maculata was formerly known as P. insularum
> Still some debate over the taxonomy of Pomacea spp.
> P. maculata is native to parts of South America
> First reported in the U.S. in Florida in 2002
> Now distributed throughout much of South Atlantic

Origins and Distribution

> In SC, P. maculata first reported in Socastee (Myrtle Beach) in 2008. Currently 3 populations in SC.

Diet / herbivory

$>$ Higher rates of feeding and growth than most native freshwater snails (Baker et al., 2010)
> Consume a wide variety of aquatic vegetation; compete with native spp. (Morrison \& Hay, 2011)
$>$ Introduced to consume unwanted plants
> Agricultural pests

Early maturity / High fecundity

> Reach maturity as early as 3 months old
> Females each deposit at least one egg mass per week from April - September (Barnes et al., 2008)
> Each egg mass contains ~2000 eggs, each yielding 10-140 snails

From Barnes et al. (2008)

Human health concern

Pomacea maculata can serve as an intermediate host for the rat lung worm parasite. Angiostrongylus cantonensis.

Teem et al. (2013)

Humans are incidental hosts. Passage of larvae in humans has never been documented, and humans do not transmit either \mathbf{A}. cantonensis \mathbf{A} or A. costaricensis

A Causes eosinophilic meningitis, a meningoencephalitis characterized by eosinophils in the cerebrospinal fluid (CSF). Common in parts of Southeast Asia and Pacific islands, Africa and the Canbbean.
A. Causes eosinophilic enteritis, an eosinophilic inflammation of the mesenteric arterioles of the ileocecal region of the gastrointestinal tract that mimics appendicitis. Common in parts of Central and South America.

Third-stage larvae are ingested by rats.

A Eggs hatch in the lungs, and first-stage larvae are passed in rodent feces (A. cantonensis)
A. Eggs hatch in larvae are passed larvae are pa
in the feces in the feces
(. costaricensis).

First-stage larvae infect snails and slugs.

Slugs and snails are intermedrate hosts, and after 2 molts, the larvae reach the infective (third) stage.

Humans become infected through food containing third-stage (infective) larvae. Food items may include uncooked snails or slugs vegetabies contaminated with snails, slugs, or mollusk secretions (slime), or infected paratenic hosts (i.e., crabs, freshwater shrimp)

Recent Research Questions:

Are there additional populations of Pomacea maculata in other stormwater ponds in South Carolina, outside of the three known areas?
> Distribution Survey in 2015

What is the seasonality of snail capture and reproductive activity (egg-laying) of P. maculata in SC?
> Bi-weekly Survey, West Ashley Pond, 2015-2016

For the known populations of P. maculata in SC, is this invasive species present in additional ponds within those systems?
> Spread survey in 2015

Słudy Sites

> Distribution Survey - coastal counties of SC
> Bi-weekly Survey - West Ashley, SC pond only
> Spread Survey - West Ashley and Myrtle Beach, SC

Distribution Survey

> Using Byers et al. (2013) model, we randomly selected 100 ponds throughout coastal SC
Used stormwater retention pond GIS datalayer to locate ponds. Surveyed ponds on residential, commercial, and dgricultural lands

Distribution Survey

> Perimeter of pond determines the number of "rake sites" (i.e., site every 100 m). A clam rake and a garden rake scrape the top 3 cm of the pond.
> Pond perimeter surveyed for snails and egg masses
> Record pond characteristics (vegetation, substrates) and pond water quality
> Snails and egg masses are counted for each substrate type, and all accessible egg masses destroyed

Distribution Survey

> No new P. maculata populations were found among the 100 randomly selected ponds. Populations may be very localized.
> 4 other invasive freshwater snail species were found on Hilton Head Island.

Bellamya japonica

Biomphalaria havanensis

Pyrgophorus parvulus

Melanoides tuberculata

Bi-weekly survey, West Ashley

Village Green, West Ashley (Charleston)

Bi-weekly survey, West Ashley

> Sampling pond in West Ashley bi-weekly (May 2015

- May 2016)
- Visual surveys and rakings
- Collect water quality data (temperature and conductivity)
- Collect all snails found
- Destroy all egg masses (and making notes on those that are not accessible)

Bi-weekly survey, West Ashley

> On the first day of this survey, we collected 60+ snails and collected dozens of egg casings

Bi-weekly survey, West Ashley

Island apple snails
——Egg clutches

Total Abundances of Island Apple Snails and Egg Clutches

Bi-weekly survey, West Ashley

$\log (\#$ snails) $=-0.035+(0.886 * \log ($ air temp. $))$
Adj. $R^{2}=0.0372 \quad \mathrm{~F}=1.734 \quad \mathrm{dF}=1 \quad \mathrm{p}=0.204$
log(\# snails) $=-1.565+(1.708$ * log(avg. air temp. prev. 2 wks))

- Average air temperature
- Minimum air temperature

$$
\text { Adj. } R^{2}=0.119 \quad \mathrm{~F}=3.566 \quad \mathrm{dF}=1 \quad \mathrm{p}=0.075
$$

Bi-weekly survey, West Ashley

log(\# egg clutches) $=-7.323+(5.064 * \log ($ air temp. $))$
Adj. $\mathrm{R}^{2}=0.476$
$\mathrm{F}=18.26$
$d F=1$
$p<0.001$
log(\# egg clutches) $=-14.223+(8.761 * \log (a v g$. air temp. prev. 2 wks$))$
Adj. $\mathrm{R}^{2}=0.750$
$\mathrm{F}=57.996$
$d F=1$
$p<0.001$

- Minimum air temperature

Bi-weekly survey, West Ashley

Substrate preference

Bi-weekly survey, West Ashley

Sampling day

Spread Survey

Potential mechanisms for spread
$>$ Stormwater pond connectivity
$>$ Predators

- New human introductions
> Flooding, large rain events

Spread Survey

> Surveyed all ponds within 0.5 -mile radius of known established
P. maculata population
> Conducted visual surveys of pond perimeters and rake site sampling
> Surveyed 1 area in West Ashley and 3 areas in Myrtle Beach

Spread Survey

West Ashley:
> 9 of 24 ponds positive for P. maculata

- (pink) = no snails observed (yellow) = snails observed

Spread Survey

Myrtle Beach I:

> No P. maculata found in pond with historic population
> Found 1 pond (out of 20 surveyed) with P. maculata snails and egg masses

- (pink) = no snails observed (yellow) = snails observed

Myrtle Beach II:

> Re-centered survey area around pond where P. maculata were observed
> Found 2 more ponds in survey area with P. maculata and its egg masses

- (pink) = no snails observed (yellow) = snails observed

Myrtle Beach III:

> Solely a visual survey
> 11 of 28 ponds yielded P. maculata
> 3 of 28 ponds had only egg masses
> Always egg masses present when P. maculata were observed
(yellow) = live snails and egg masses

- (black) $=$ egg masses only
(pink) = no sign of snails or eggs

New Research Directions...

$>$ Determination of presence of Angiostrongylus cantonensis in P. maculata collected in SC
>Microscopy and qPCR
$>$ qPCR protocol is already published for A. cantonensis (Qvarnstrom et al., 2010)
> A. cantonensis DNA (positive control) for qPCR obtained from Dr. Qvarnstorm (CDC)
$>$ Dissections of P. maculata from SC collected in 2015 are ongoing...

New Research Directions...

New Research Directions...

> Sex ratios, size-at-age, reproductive maturity, and mark-recapture studies
> Need to improve our abilities to capture snails in ponds. Baited traps, perhaps...
> Interested in physiological tolerances and diet preferences - different from TX / LA / FL?

New Research Directions...

$>$ Investigate population genetic structure of P. maculata in SC using microsatellite markers (Chen et al., 2011)
$>$ Interested in acquiring P. maculata tissue from other parts of its invasive range

Acknowledgements

Dr. Isaure de Buron
Dr. Rob Dillon Tiffany Brown Robin Frede Kelsey McClellan Kristin Linesch
Elizabeth Underwood Gary Sundin Ben Stone John Heinsohn
Danielle Draewell
Mike Hook
Dave Fuss

DNR

College of Charleston
College of Charleston
Unity College (NSF-REU student)
College of Charleston grad student
College of Charleston grad student
College of Charleston grad student
College of Charleston grad student SCDNR
SCDNR
SCDNR
SCDNR
SCDNR
Horry County Government

GRADUATE PROGRAM IN MARINE BIOLOGY

Questions?

Sampling period	\# single live snails	\# copulating pairs	\# egg casings	Min size	Max size	Avg size
1 May 2015	8	5	462	60	85	71.17
26 May 2015	18	12	450	2	80	25.50
9 June 2015	19	3	243	2	80	33.39
22 June 2015	19	0	235	2	80	23.94
8 July 2015	21	6	201	3	81	44.03
20 July 2015	28	7	133	13	82	61.89
4 August 2015	70	13	150	2	87	64.36
17 August 2015	41	8	216	35	86	67.86
3 September 2015	39	0	275	3	93	65.13
15 September 2015	84	21	378	5	85	65.84
30 September 2015	80	20	231	37	83	67.53
15 October 2015	78	14	275	3	82	65.17
30 October 2015	58	17	122	34	83	67.22
13 November 2015	44	7	113	38	83	65.78
30 November 2015	17	0	25	5	76	65.67
16 December 2015	6	0	5	2	82	31.60
5 January 2016	18	3	89	53	75	63.30
20 January 2016	42	0	3	42	83	64.38

Copulating Pairs Over Time

Spread Survey - Myrtle Beach

