Spread and invasiveness of the recently introduced Chinese mystery snail (*Bellamya chinensis*) in riverine ecosystems in the Netherlands

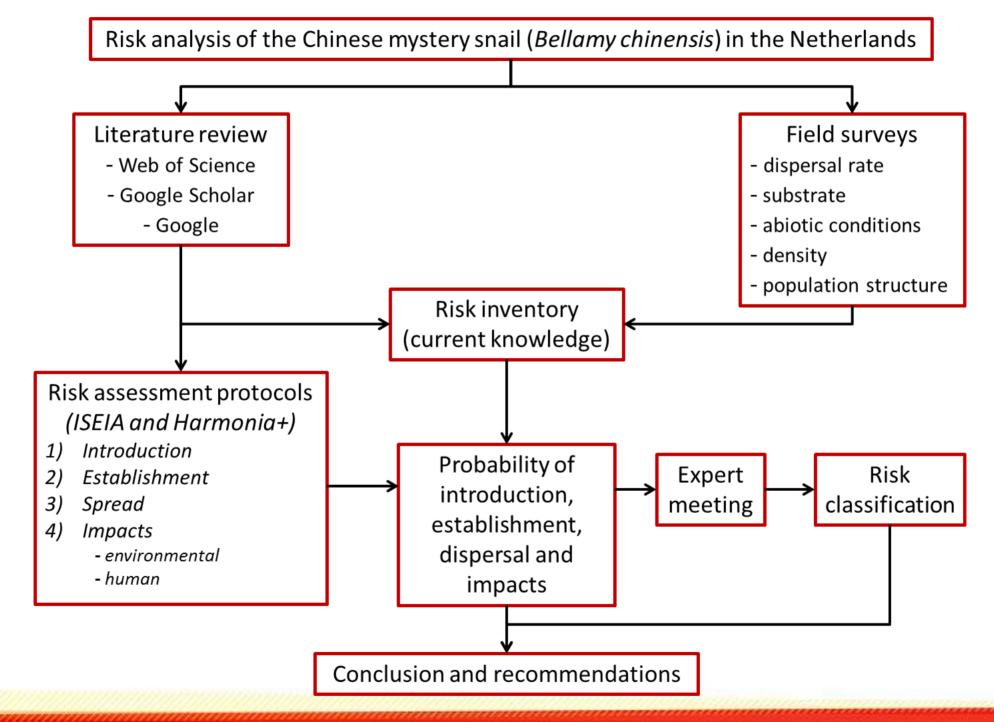
> Frank Collas Stan Breedveld, Gerard van der Velde & Rob Leuven

> > April 11, 2016

International Conference on Aquatic Invasive Species Winnipeg, Manitoba, Canada

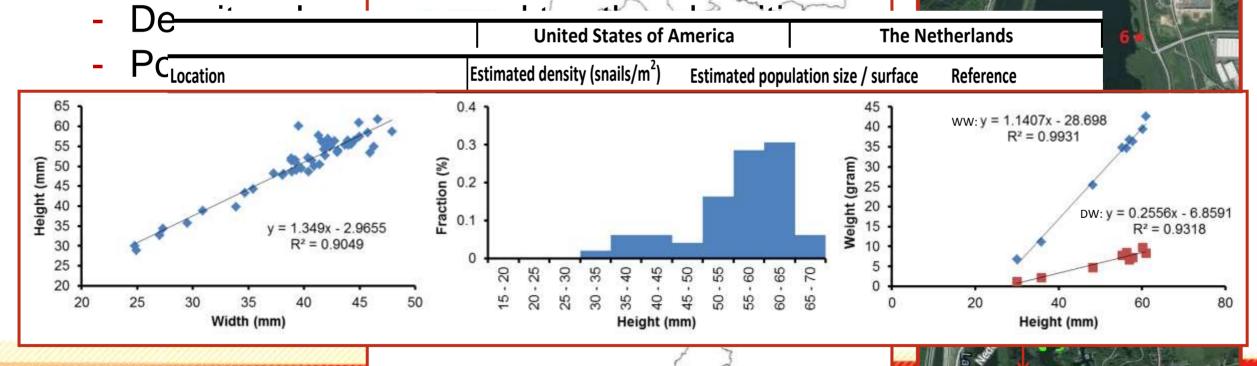
Introduction

- 2008 Chinese mystery snail (Bellamya chinensis)
 - Origin: Eastern Asia (e.g., China, Taiwan, Japan)
 - Introduced: United States (32 states); Canada (Quebec)
- Dispersal vectors
 - Recreational boats
 - Waterfowl
 - Aquatic mammals
 - Aquarium and ornamental trade


Introduction

- Human mediated dispersal →
 ↑ likelihood new introductions Netherlands/Europe
- Risk assessments
 - Policy tool to identify species impacts and invasiveness
 - Takes the four main stages of invasion into account:
 - 1) Entry; 2) Establishment; 3) Spread; 4) Impacts
- Aim:

<u>Acquire relevant information</u> on the four stages of *B. chinensis* invasion, subsequently perform a <u>risk assessment</u> using the acquired information



Material and methods

Results – field survey

- Overview of distribution in the Netherlands (11 sites)
- Largest known population (Eijsder Beemden)
 - Natural dispersal rate: ~ 500 metres / 5 years
 - Substrate mud, boulders
 - Abiotic conditions —2similar to other reported cor

4 / 11

Ra

Oost-Ma

Results – literature study

Species description

- Height up to 70 mm, lifespan up to five years
- Facultative filter feeder, detritivore, browses on microalgae
- Mostly sandy to muddy substrates
- Internal fertilization, parthenogenesis?
- High fecundity (27.2 65 young per year)

Ecological effects

- Trematode infection 🧎 in North America
- Crayfish attack protection 1 compared to native species
- Native snail species abundance
- Filtration rate † ; alteration of microbial community
- N:P ratio may increase (low excretion of P)
- Food source for (native)crayfish, rats and other mammals

Results – literature study

Socio-economic effects

- Cultured for the food market
- May clog water intake pipes
- Fishing nets can become clogged
- Dead or decaying shells \rightarrow nuisand
- Public health effects
 - Intermediate host for echinostoma
 - Infection through consumption
 - Echinostamiasis: diarrhoea, abdominal pain and anorexia
 - No reported infections from North America
 - Though, consumption takes place

Results – risk assessment

ISEIA

Dispersion potential or invasiveness Colonisation of high conservation value habitats		2	2		B3 🗑	A3 🔄
		<u>3</u>			B3	AD X
Adverse impacts on native species		<u>3</u>	wide		ATO .	LAO LAO
1) Predation/Herbivory	2		7		B2 ³	A2
2) Interference and exploitation competition	3		tricte			
3) Transmission of diseases to native species	2		lest		-	
4) Genetic effects	DD		stag		1/	A1
Alteration of ecosystem functions		<u>2</u>	olater		X	
1) Modification of nutrient cycling or resource pools	2		asion tsolar			
2) Physical modifications of the habitat	2		Inv		B0	AO IS
3) Modifications of natural succession	2		feut			ERT
4) Disruptions of food webs	2		ate			AL
Sum of assessments:		10		moderat		
Invasion stage:	Isolated	l populations	Impact (environmen		mental hazar	
Classification:	B1 (v	watch list)				

- Risk classification individually \rightarrow meeting to form consensus
- Score: high (3), medium (2), low (1), data deficient (0)

Results – risk assessment

 1: maximum score for each category;
 2: introduction x establishment x spread; 3; average for each category

• Harmonia+

	Risk classification	Risk score	Certainty	Certainty score ³
Introduction ¹	High	1.00	High	0.67
Establishment ¹	High	1.00	High	1.00
Spread ¹	Medium	0.50	Medium	0.50
Environment ¹	Medium	0.50	Medium	0.50
Plant impact ¹	Low	0.00	High	1.00
Animal impact ¹	Low	0.00	Low	0.33
Human impact ¹	Low	0.25	Low	0.33
Other ¹	Low	0.00	High	1.00
Invasion score ²	High	0.79		
Impact score	Medium	0.50		
Risk score	Medium	0.40		

- Risk classification together
- Score: risk score and certainty score (scale from 0 1)

Discussion

- Preliminary ISEIA risk score of 10:
 - Moderate impact
 - Isolated populations
- Harmonia+ risk score is medium
- New York invasiveness assessment
 - *B. chinensis*: 83 / 100 points \rightarrow invasiveness rank: very high
- Early invasion stage
 - Re-evaluation when more data available

Conclusion

- *B. chinensis* has a medium risk
- Management is needed
 - Pathway management: aquarium trade + food market
 - Public health: outreach preparation, consumption and risks
 - Elimination and control measures
 - Copper sulphate
 - (applied, no full eradication)
 - Drawdowns (not successful, tolerant to desiccation)
 - Manual removal (Missouri, decreased abundance)
- Future research
 - Environmental impacts (dispersal potential, ecosystem alteration)
 - Human health and animal impacts
 - Management options

Thanks for your attention – Questions?

For more information or cooperation: <u>f.collas@science.ru.nl</u> Radboud University, The Netherlands

1

